1. 2+0.5+2.5= 3. 2km/hr average
2. 14-6=4seconds. 8m/s in 4s = 2m/s acceleration
3. 15m/s divided by 2.5 = 6m/s acceleration
Answer : Use a magnet to pull out the iron filings as they are attracted to a magnet
Explanation : we use the magnet to separate the sand from the iron filing. Because the magnet has an attraction power.
We can say that we can use the magnet to attract the iron filings out of the mixture because iron is magnetic solid, but sand will not attract because sand is not magnetic solid.
So, we use a magnet to pull out the iron filings as they are attracted to a magnet.
All of the possibilities would be aabb. There are no dominant traits to come through from the self pollinating plant so therefore, the offspring would would have the same genotypes.
I apologize for the messy graph in advance. If you have any further questions please let me know
Answer:
They will not meet
h-hX=1.2*g*t²
hX=v0*t-(1/2*g*t²)
Explanation:
fall h=1/2*g*t²
elevation time if v0=20 m/s te=v0/g=20 m/s /9.81 m/s²=2.0387s
hmax=v0²/(2*g)=(400 m²/s²)/19.62 m/s²2=20.387 m
free fall
t=2.0387s yields hX=1/2*g*t²=20.387 m
h-hX=200m - 20.387 m=179,613 m.
so, the second body has not enough initianoal speed to reach a meeting point
Answer:
a) True. The image of the mite is virtual
e) True. The image must be within the focal length of the eyepiece len
Explanation:
Let's review the general characteristics of compound microscopes
Formed by two converging lenses
Magnification is
M = -L/fo 0.25/fe
Where fo is the focal length of the objective lens and fe is the focal length of the ocular lens, L is the tube length
Let's review the claims
a) True. The image of the mite is virtual
b) False. The effect is the opposite of the magnification equation
c) False. The objective lens forms a real image
d) False. As the seal distance increases the magnification decreases
e) True. The image must be within the focal length of the eyepiece len