Answer:
Explanation:
you need to change either the turn of the jump or push off higher or lower from the wall
<span>To find the molar mass, look at a periodic table for each element.
Ibuprofen, C13 H18 and O2. Carbon has a molar mass of 12.01 g, Hydrogen has 1.008 g per mole, and Oxygen is 16.00 g per mole.
C: 13 * 12.01
H: 18 * 1.008
O: 2 * 16.00
Calculate that, add them all together, and that is the molar mass of C13H18O2.
Molar mass: 206.274
Next, you have 200mg in each tablet, with a ratio of C13H18O2 (molar mass) in GRAMS per Mole
So, you need to convert miligrams into grams, which is 200 divided by 1000.
0.2 g / Unknown mole = 206.274 g / 1 Mole
This is a cross multiplying ratio where you're going to solve for the unknown moles of grams per tablet compared to the moles per ibuprofen.
So, it's set up as:
0.2 g * 1 mole = 206.274 * x
0.2 = 206.274x
divide each side by 206.274 to get X alone
X = 0.00097
or 9.7 * 10^-4 moles
The last problem should be easy to figure out now that you have the numbers. 1 dose is 2 tablets, which is the moles we just calculated above, times four for the dosage.
</span>
Answer:
Explanation:
There is a formula for this:
M = DRT/P where M = molar mass. This just derived from PV = nRT where you say n = grams/molar mass. However, just with this formula, we can get D which is density at STP (1 atm and 273K). We find that D = 6.52g/L.
Coffee creamer is a base because if you eat it raw then it will soak up the acid in your stomach.
Answer:
Explanation:
first to get the density of some thing you have to devide the mass by the volume so 0.00018 (divided) by 10 kg and that gives you ur answer