Answer:
I can't understand your language? can you write in English
I'm sorry
I believe its 10^23 u r saying
then no. of moles= 9.03*10^23/6.02*10^23=1.5mole
<h3>
Answer:</h3>
Ni + Pb(NO₃)₂ → Ni(NO₃)₃ + Pb
<h3>
Explanation:</h3>
We are required to write a balanced equation from the word equation;
- Nickel reacts with lead nitrate (II) to produce nickel(III) nitrate and lead
- The equation will be written by writing the symbols of the reactants and products.
That is;
Ni + Pb(NO₃)₂ → Ni(NO₃)₃ + Pb
We then balance the equation;
- To balance the equation, we put appropriate coefficients on reactants and products, so that the number of atoms of each element is equal on both sides of the equation.
- Thus, the balanced equation will be;
2Ni + 3Pb(NO₃)₂ → 2Ni(NO₃)₃ + 3Pb
Answer:
CN^- is a strong field ligand
Explanation:
The complex, hexacyanoferrate II is an Fe^2+ specie. Fe^2+ is a d^6 specie. It may exist as high spin (paramagnetic) or low spin (diamagnetic) depending on the ligand. The energy of the d-orbitals become nondegenerate upon approach of a ligand. The extent of separation of the two orbitals and the energy between them is defined as the magnitude of crystal field splitting (∆o).
Ligands that cause a large crystal field splitting such as CN^- are called strong field ligands. They lead to the formation of diamagnetic species. Strong field ligands occur towards the end of the spectrochemical series of ligands.
Hence the complex, Fe(CN)6 4− is diamagnetic because the cyanide ion is a strong field ligand that causes the six d-electrons present to pair up in a low spin arrangement.
Answer:
Cyclobutane is a cycloalkane and organic compound with the formula (CH2)4.
Explanation: