Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible to set up the following energy equation for both objects 1 and 2:

In terms of mass, specific heat and temperature change is:

Now, solve for the final temperature, as follows:

Then, plug in the masses, specific heat and temperatures to obtain:

Yet, the values do not seem to have been given correctly in the problem, so it'll be convenient for you to recheck them.
Regards!
Answer:
Electrons will flow from left to right through the wire.
Pb^2+ ions will be reduccd to Pb metal.
The concentration of Sn2+ ions in the left compartment will increase.
Explanation:
Looking at the relative electrode potentials of the two metals
Sn= -0.14
Pb=-0.13
Tin is expected to function as the anode (left hand half cell) and lead as the anode (right hand half cell) tin oxidizes to sn^2+ hence its concentration increases on the left compartment while lead is reduced to ordinary lead metal on the right hand half cell . since oxidation occurs on the left hand side, electrons flow from left to right.
Answer:

Recommended daily Amount (RDA) of magnesium is 410,000 μg/day.
Explanation:
There are 1000μg in 1 mg and 1000 mg in 1g
1 mg=1000μg
The Recommended daily Amount (RDA) is 410 mg/day of magnesium. Converting 410 mg/day into μg/day

It will become 410,000 μg/day
So Recommended daily Amount (RDA) of magnesium is 410,000 μg/day.
Well, a compound has a total charge of 0. So, it's electrically neutral. Since the X is 3+ and the Y is 3- they add to 0. Meaning no subscripts are necessary. Why don't you try a different combo?
Like:
A^3 and B^1-, to get a 3- charge you need 3xB^1- so the formula is AB3
Does this help?
Yes due to the radioactivity having nothing to do with the chemical equation given it will release radiation at a rate determined by it's half life.