Answer:
0.053moles
Explanation:
Hello,
To calculate the number of moles of gas remaining in his after he exhale, we'll have to use Avogadro's law which states that the volume of a given mass of gas is directly proportional to its number of moles provided that temperature and pressure are kept constant. Mathematically,
V = kN, k = V / N
V1 / N1 = V2 / N2= V3 / N3 = Vx / Nx
V1 = 1.7L
N1 = 0.070mol
V2 = 1.3L
N2 = ?
From the above equation,
V1 / N1 = V2 / N2
Make N2 the subject of formula
N2 = (N1 × V2) / V1
N2 = (0.07 × 1.3) / 1.7
N2 = 0.053mol
The number of moles of gas in his lungs when he exhale is 0.053 moles
Answer:
strong nuclear force
Explanation:
1, a force that acts on charged particles
2, a force that holds atomic nuclei together
3, gravity, weak nuclear, electromagnetic, strong nuclear
4, strong nuclear force
5, Gravity and the electromagnetic force have infinite ranges while the nuclear forces have very small ranges.
100% :)
Answer:
Volume of the sulfuric acid (25cm³), same mass of each metal (1g)
Explanation:
In an experiment, the CONTROL VARIABLE also known as constant is the variable that is kept unchanged for all groups in an experiment. This is done in order not to influence the outcome of the experiment.
In this case, students are trying to investigate the reactivity of four different metals. They added 1 g of each metal to 25cm³ of sulfuric acid and recorded the temperature change. Based on the explanation of control variable above, the VOLUME OF SULFURIC ACID (25cm³) and the MASS OF EACH METAL (1g) are the CONTROL VARIABLES because they are the same or unchanged in this experiment.
15.9643 gramns are in 2.3 moles of lithium
Answer:
See image attached
Explanation:
a)
The full reaction mechanism of step 1 was obtained from Bartleby and attached to this answer. The steps involved in the reaction are:
1) Loss of Br- and formation of a carbocation
2) Attack of CH3CN on the carbocation
4) Formation of a quaternary nitrogen intermediate
5) Attack of water on the quaternary nitrogen intermediate
6) Loss of the water molecule
5) Formation of the amide product
b)
i) sodium hydroxide
ii) HCl