Answer:
leave little space between the molecules.
Explanation:
Matter is made up of small particles called molecules. These molecules present in matter are arranged inside its bulk.
In liquids and solids, the molecules are arranged very close together in such a way that there is only a little space between them. This is why liquids and solids are referred to as "condensed phases".
They are quite unlike gases where there is a lot of space between gas molecules.
amino group
carboxyl group
R-group
single Hydrogen arom
Explanation:
Since, it is given that critical temperature of Argon is 150.9 K and critical pressure of Argon is 48.0 atm.
It is known that gas phase of neon occurs at 50 K. As the boiling point of Ar is more than the boiling point of neon which means that there is strong intermolecular force of attraction between argon molecules as compared to neon molecules.
This is also because argon is larger in size. As a result, induced dipole-induced dipole forces leads to more strength in Ar as compared to Ne.
Answer:
Energy per mole of photons = 2.31 × 10^2 KJ/mol
Explanation:
Energy, E = hf;
Where h is Planck's constant = 6.63 ×10^-34, and f is frequency of the photons.
E = 6.63 × 10^-34 × 5.8 × 10^14
E = 3.84 × 10^-22 KiloJoules
I mole of photons contains Avogadro's number of particles, 6.02 × 10^23
Therefore, the energy per mile of photon is 3.84 × 10^-22 KJ × 6.02 × 10^23
Energy per mile of photon = 2.31 × 10^2 KJ/mol