Answer:
Explanation:
electric field at the location of electron
= 9 x 10⁹ x 7.2 / .03²
= 72 x 10¹² N/C
force on electron = electric field x charge on electron
= 72 x 10¹² x 1.6 x 10⁻¹⁹
= 115.2 x 10⁻⁷ N .
C )
work done = charge on electron x potential difference at two points
potential at .03 m
= 9 x 10⁹ x 7.2 / .03
= 2.16 x 10¹² V
potential at .001 m
= 9 x 10⁹ x 7.2 / .001
= 64.8 x 10¹² V
potential difference = (64.8 - 2.16 )x 10¹² V
= 62.64 x 10¹² V .
work done = 62.64 x 10¹² x 1.6 x 10⁻¹⁹
= 100.224 x 10⁻⁷ J .
D )
There will be no change in the magnitude of force on positron except that the direction of force will be reversed . In case of electron , there will be repulsion and in case of positron , there will be attraction .
Work done in case of electron will be positive and work done in case of positron will be negative .
electric field due to charge will be same in both the cases .
The potential difference between the two ends of the circuit is the electric potential difference. The electric potential difference and the work will be 10V and 1.6 x 10^-18 J respectively.
<h3>What is an electric field?</h3>
An electric field is an electric property that is connected with any location in space where a charge exists in any form. The electric force per unit charge is another term for an electric field.
The given data in the problem is given by;
E is the electric field = (200 N/C)
d is the distance = 5.0 cm.=0.05 m
Q is the charge of electrons= 1.602 x 10^-19 C
The formula for electric potential is given by;


The work is defined as the product of the potential difference and charge of an electron.

Hence the electric potential difference and the work will be 10V and 1.6 x 10^-18 J respectively.
To learn more about the electric field refer to the link;
brainly.com/question/15071884
We know, I = Q / t
Here, Q = 150 C
t = 30 s
Substitute their values,
I = 150 / 30
I = 5 A
In short, Your Answer would be 5 Ampere
Hope this helps!
Rope or one could consider it to be C to B or A to D
Answer:
a. up
Explanation:
As per the rule of Fleming left hand, the three fingers should be places in a perpendicular manner i.e. mutually also.
The fore finger depicts the field direction
The middle finger depicts the velocity
And, the thumb finger depicts the force direction that experienced on that particle i.e. charged
So the electrons would be deflects to up
Hence, the correct option is a.