Explanation: Skeletal muscle, attached to bones, is responsible for skeletal movements. The peripheral portion of the central nervous system (CNS) controls the skeletal muscles. Thus, these muscles are under conscious, or voluntary, control. The basic unit is the muscle fiber with many nuclei. These muscle fibers are striated (having transverse streaks) and each acts independently of neighboring muscle fibers.
Answer:
<h2>9.03 × 10²³ atoms </h2>
Explanation:
The number of atoms of Al can be found by using the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 1.5 × 6.02 × 10²³
We have the final answer as
<h3>9.03 × 10²³ atoms</h3>
Hope this helps you
F (Fluorine) is in column (group/family) VIIA, or the "halogens". When you see the halogens (Fluorine, Chlorine, Bromine, and Iodine) in combination with a metal, each halogen atom present will carry a -1 charge. We can see that the atom has no charge, so the metal must cancel out the negative charges brought by the two fluorine atoms.
(Charge on m) + 2*(charge on fluorine) = 0
(Charge on m) + 2*(-1) = 0
(Charge on m) - 2 = 0
Charge on m ion = +2
Answer:
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction.
Explanation:
Answer:Light bounces off of the mirror and then appears to come from behind the mirror.
Explanation:Plane mirrors form images that are virtual, upright and the same size and shape as the object it is reflecting.
When rays of light from the object hits a plane mirror they bounces off the mirror,that is they undergo reflection, and appear to originate from behind the mirror, resulting to the formation of a virtual image.
The image formed appears to be behind the plane in which the mirror lies. A virtual image is an image that is formed at a location from which the rays of light appear to come from. The image can not be formed on a screen..