Something to do with how the suns magnetic field interacts with the surface plasmas I think.
<em>It's a test on Geography!
</em>
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
Answer:


Explanation:
<u>Displacement
</u>
It's a vector magnitude that measures the space traveled by a particle between an initial and a final position. The total displacement can be obtained by adding the vectors of each individual displacement. In the case of two displacements:

Given a vector as its polar coordinates (r,\theta), the corresponding rectangular coordinates are computed with


And the vector is expressed as

The monkey first makes a displacement given by (0.198 km,0°). The angle is 0 because it goes to the East, the zero-reference for angles. Thus the first displacement is

The second move is (145 m , -15.8°). The angle is negative because it points South of East. The second displacement is

The total displacement is


In (magnitude,angle) form:




Answer:
Total momentum = 16 Kgm/s
Explanation:
Let the momentum of the two balls be A and B respectively.
Momentum A = 16 kgm/s
Momentum B = 0 kgm/s (since the ball is at rest).
Total momentum = A + B
Total momentum = 16 + 0
Total momentum = 16 Kgm/s
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;