"Silver chloride is essentially insoluble in water" this statement is true for the equilibrium constant for the dissolution of silver chloride.
Option: b
<u>Explanation</u>:
As silver chloride is essentially insoluble in water but also show sparing solubility, its reason is explained through Fajan's rule. Therefore when AgCl added in water, equilibrium take place between undissolved and dissolved ions. While solubility product constant
for silver chloride is determined by equilibrium concentrations of dissolved ions. But solubility may vary also at different temperatures. Complete solubility is possible in ammonia solution as it form stable complex as water is not good ligand for Ag+.
To calculate
firstly molarity of ions are needed to be found with formula: 
Then at equilibrium cations and anions concentration is considered same hence:
![\left[\mathbf{A} \mathbf{g}^{+}\right]=[\mathbf{C} \mathbf{I}]=\text { molarity of ions }](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%3D%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D%3D%5Ctext%20%7B%20molarity%20of%20ions%20%7D)
Hence from above data
can be calculated by:
= ![\left[\mathbf{A} \mathbf{g}^{+}\right] \cdot[\mathbf{C} \mathbf{I}]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%20%5Ccdot%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D)
Answer:
The boiling point of 1-chlorobutane is substantially lower than that of 1-butanol
Explanation:
Fractional distillation is a separation process based on difference in boiling point of two compounds.
1-chlorobutane is a polar aprotic molecule due to presence of polar C-Cl bond. Hence dipole-dipole intermolecular force exists in 1-chlorobutane as a major force.
1-butanol is a polar protic molecule. Hence dipole-dipole force along with hydrogen bonding exist in 1-butanol.
Therefore intermolecular force is stronger in 1-butanol as compared to 1-chlorobutane.
So, boiling point of 1-butanol is much higher than 1-chlorobutane.
Hence mixture of 1-chlorobutane and 1-butanol can be separated by fractional distillation based on difference in boiling point.
So, option (D) is correct.
Monocots<span> have only one seed leaf inside the seed coat. It is often only a thin leaf, because the endosperm to feed the new plant is not inside the seed leaf. </span>Dicots <span>have two seed leaves inside the seed coat. They are usually rounded and fat, because they contain the endosperm to feed the embryo plant.
</span><span>
</span>
Answer:
The final volume when pressure is changed is 126.1mL
Explanation:
Based on Boyle's law, in a gas the volume is inversely proportional to its pressure when temperature remains constant. The equation is:
P₁V₁ = P₂V₂
<em>Where P is pressure and V volume of 1, intial state and 2, final state.</em>
<em />
Computing the values of the problem:
350mmHg*200mL = 555mmHgV₂
126.1mmHg = V₂
<h3>The final volume when pressure is changed is 126.1mL</h3>
N2 should be the gas to effuse more slowly