Answer:
The chemical equilibrium of the system will be unaffected. The chemical equilibrium of the system will shift to the right to favor the forward reaction. The chemical equilibrium of the system will shift to the left to favor the reverse reaction. (I hope this helped!!)
False
Although we use many of their ideas to describe atoms today, such as the existence of a tiny, dense nucleus in an atom (proposed by Rutherford), or the notion that all atoms of an element are identical (proposed by Dalton), some of their ideas have been rejected by the modern theory of the atom.
For example, Thompson came up with the plum pudding model to describe an atom, which resembled a sphere of positive charge with electrons embedded in it. We know now, however, that atoms are mostly empty space with a tiny, dense nucleus.
Another example is Dalton's atomic theory, which stated that atoms are indivisible particles. However, this was disproved by the discovery of subatomic particles.
Nothing unless it was dug out from roots if not they would grom back in a long period of time
A general exponential expression is something like:
A^n
This means that we need to multiply the number A by itself n times.
Using that we will get (-2)^6 = 64
With that definition, we can rewrite:
(-2)^6 = (-2)*(-2)*(-2)*(-2)*(-2)*(-2)
So we just need to solve the above expression.
Also, remember the rule of signs:
(-)*(-) = (+)
We will get:
(-2)*(-2)*(-2)*(-2)*(-2)*(-2) = [(-2)*(-2)]*[(-2)*(-2)]*[(-2)*(-2)]
= 4*4*4 = 16*4 = 64
Then we got:
(-2)^6 = 64
If you want to learn more, you can read:
brainly.com/question/17172630