Answer:
Hydrocarbon is a Compound that is made up of Carbon and Hydrogen .
A shared derived characteristics is usually a homologous structure, such as a backbone, that is shared by all organisms in a group.
Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.