Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
Mitochondria are rod-shaped organelles are basically considered the power producers of the cell, it converts oxygen and nutrients into adenosine triphosphate or ATP, which is the chemical energy,also known as "currency" of the cell which powers the metabolic actions of the cell. This process is called aerobic respiration and it is the reason animals breathe oxygen. Cellular repiration happens in the mitochodrion. The 3 phases of cellular respiration are Krebs Cycle, Electron Transport and Glycolysis (Fermentation). Glycolysis takes place in the cytoplasm while the Krebs cycle and electron transport take place in the mitochondria.
The answer is elements gain electrons. Oxidation reduction is elements lose electrons. And oxygen is added/lost can be a type of oxidation/reduction reaction.
Answer:
Explanation: For most longer adjectives, the comparative is made by adding the word "more" (for example, more comfortable) and the superlative is made by adding the word "most" (for example, most comfortable). If a 1-syllable adjective ends in "e", the endings are "-r" and "-st", for example: wise, wiser, wisest.
Unfortunately, we have not fully solved the 'nitrogen problem'. To do this, we must halve the amount of nitrogen we dump into the environment by mid-century or our ecosystems will face epidemics of toxic tides, lifeless rivers, and dead oceans. And that to do that will require, among other things, almost doubling the efficiency of nitrogen use on the world’s farms.