Answer:
90%
Explanation:
if you lose 10% of a 100 you get 90
Answer:
4.15 m/s
Explanation:
Its given that acceleration is 0.1 m/s² with a direction opposite to the velocity. Since, the direction of acceleration is opposite to the velocity, this gives us a hint that the velocity is decreasing and so acceleration would be negative.
i.e.
acceleration = a = - 0.1 m/s²
Distance covered = S = 6m
Velocity after covering 6 meters = Final velocity = = 4 m/s
We need to find the initial speed, which will be the same as the magnitude of initial velocity.
Initial velocity = = ?
3rd equation of motion relates the acceleration, distance, final velocity and initial velocity as:
Using the known values in the formula, we get:
Thus, the initial speed of the ball was 4.15 m/s
Answer:
8400m
Explanation:
The engine that falls off would have the same constant horizontal velocity as the airplane's when if falls off if we ignore air resistance. So it would have a horizontal velocity of 280m/s for 30seconds before it hits the ground.
Therefor the horizontal distance the engine travels during its fall is
280 * 30 = 8400m
F - False.
The law of conservation of momentum states that the total momentum is conserved.
Answer:
1. Largest force: C; smallest force: B; 2. ratio = 9:1
Explanation:
The formula for the force exerted between two charges is
where K is the Coulomb constant.
q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.
For simplicity, let's combine Kq₁q₂ into a single constant, k.
Then, we can write
1. Net force on each particle
Let's
- Call the distance between adjacent charges d.
- Remember that like charges repel and unlike charges attract.
Define forces exerted to the right as positive and those to the left as negative.
(a) Force on A
(b) Force on B
(C) Force on C
(d) Force on D
(e) Relative net forces
In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.
2. Ratio of largest force to smallest