Since it was stated that it must move at constant
velocity, so the only force it must overpower is the frictional force.
So the equation is:
F cos θ = Ff
F cos 36 = 65 N
F = 80.34 N
<span>So the nurse must exert 80.34 N of force</span>
Hello :))
Mass is dependent on the inertia of an object:))
Hope this helps
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Answer:
The resistance of the inductor at resonance is 258.76 ohms.
Explanation:
Given;
resistance of the resistor, R = 305 ohm
capacitance of the capacitor, C = 1.1 μF = 1.1 x 10⁻⁶ F
inductance of the inductor, L = 42 mH = 42 x 10⁻³ H = 0.042 H
At resonance the inductive reactance is equal to capacitive reactance.

Where;
F₀ is the resonance frequency

The inductive reactance is given by;

Therefore, the resistance of the inductor at resonance is 258.76 ohms.