The table is:
t(s) vx(m/s)
0 0
10 23
20 46
30 69
a) from the data in the table, we observe that the acceleration is constant (because the rate of change in velocity is the same for each time interval of 10 seconds), so we can choose just one interval and calculate the acceleration as the ratio between the change in velocity and the change in time. Taking the first interval, we find

b) To find the jet's acceleration in g's, we just need to divide the acceleration in m/s^2 by the value of g, the acceleration of gravity (9.81 m/s^2), so we find

c) the wheels leave the ground when the jet reaches its take-off velocity, which is 82 m/s.
At t=0s, the velocity of the jet is 0. We know that the acceleration is constant (a=2.3 m/s^2), so we can find the time t at which the jet reaches a velocity vf=82 m/s by using the equation

Re-arranging and substituting numbers, we find

I believe that the answer to this would be option C. Since sandstones are not commonly seen among river beds, the condition that would make us easier to understand as to what happened to this is how fast the river was flowing. Due to the pressure of the river, this brought other sediments with it most especially sandstones.
Answer:
B
Explanation:
Building up emotions can be bad for your health and hurt you mentally all other options are good.
Answer:
The carrier lengthen is 0.08436 m.
Explanation:
Given that,
Length = 370 m
Initial temperature = 2.0°C
Final temperature = 21°C
We need to calculate the change temperature
Using formula of change of temperature



We need to calculate the carrier lengthen
Using formula of length

Put the value into the formula


Hence, The carrier lengthen is 0.08436 m.
Answer:
4 blocks west is final displacement. So 4 blocks per hour