1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
9

(Don't answer that there is no image, its a simple question)

Physics
1 answer:
Aleksandr-060686 [28]3 years ago
3 0

Answer:

yes

Explanation:

of course indeed correct

You might be interested in
The ball has 7.35 joules of potential energy at position B. At position A, all of the energy changes to kinetic energy. The velo
Lina20 [59]
I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J. 
At point A, all this energy has converted into kinetic energy, which is:
K= \frac{1}{2}mv^2
And since K=7.35 J, we can find the velocity, v:
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 7.35 J}{1.5 kg} }=3.1 m/s
3 0
3 years ago
What will change the velocity of a periodic wave?
Gwar [14]
The one that will change the velocity of a periodic wave is : 
B. Changing the medium of the wave
Waves is always determined by the properties of the medium, which means that changing the medium will change the velocity of the wave

hope this helps
7 0
2 years ago
Read 2 more answers
PLEASE HELPPPP !!!! Scientific investigations must be well ____ to be sure the data collected will help answer the scientists qu
konstantin123 [22]
Answer-

Analyzed or conducted

Hope this helped
3 0
2 years ago
A 70.0 kg ice hockey goalie, originally at rest, has a 0.110 kg hockey puck slapped at him at a velocity of 31.5 m/s. Suppose th
NISA [10]

Answer

given,

mass of the goalie(m₁) = 70 kg

mass of the puck (m₂)= 0.11 kg

velocity of the puck = 31.5 m/s

elastic collision

v_1=\dfrac{m_2-m_1}{m_1+m_2}v_1+\dfrac{2m_2}{m_1+m_2}v_2

v_{pf}=\dfrac{0.11-70}{0.11+70}31.5+\dfrac{2m_2}{m_1+m_2}\times (0)

v_{pf}=-31.4\ m/s

v'_2 = \dfrac{2m_1v_1}{m_1+m_2}-\dfrac{(m_2-m_1)v_2}{m_2+m_1}

v_{gf} = \dfrac{2\times 0.11\times 31.5}{0.11+70}-\dfrac{(0.11-70)\times 0}{m_1+m_2}

v_{gf} = \dfrac{2\times 0.11\times 31.5}{0.11+70}

v_{gf} = 0.0988\ m/s

4 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
2 years ago
Other questions:
  • Dante is leading a parade across the main street in front of city hall. Starting at city hall, he marches the parade 4 blocks ea
    10·2 answers
  • The amplitude, or magnitude, of a sinusoidal source is the maximum value of the source. What is the amplitude of the voltage sou
    7·1 answer
  • What is Cognitive Behavioural Therapy?
    7·2 answers
  • A weightlifter expends 294 w of power lifting a weight to a height of 2 m in 10 seconds. what mass has he lifted?
    9·1 answer
  • A uniform electric field exists in the region between two oppositely charged plane-parallel plates. An electron is released from
    7·1 answer
  • Work done(as a measure of energy)=force x distance. Use this equation to show that the SI base units of energy are kg m^2 s^-2
    5·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
  • Which type of air mass forms over the ocean near the equator?
    9·2 answers
  • A mimibus drives with a constant speed of 39 km/h. how far can it travel in 1.94 hours?
    10·1 answer
  • Cyclist always bends when moving the direction opposite to the wind. Give reasons​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!