The answer is A. Mixtures can be separated by physical means
A pure substance cannot be separated.
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.
Gas x would be carbon dioxide.
note/ acid + carbonate —> salt + water + carbon dioxide
the white precipitate would be calcium carbonate. CaCo₃
note/ this is a common eqn u need to remember.
X - CO₂ (carbón dioxide)
Y - CaCo₃ (calcium carbonate)
sodium carbonate is a basic salt
Answer: Option (d) is the correct answer.
Explanation:
An atom or element which has the ability to readily gain an electron will have high electronegativity.
Both Beryllium and Calcium are alkaline earth metals and hence they are electropositive in nature.
Whereas both iodine and nitrogen are electronegative in nature. But across the period there is an increase in electronegativity and down the group there is a decrease in electronegativity.
Nitrogen belongs to period 2 and iodine belongs to the bottom of group 17. Thus, we can conclude that nitrogen is more electronegative than iodine.
Answer: The amount of energy needed to move an electron from one zone to another is a fixed, finite amount. The electron with its extra packet of energy becomes excited, and promptly moves out of its lower energy level and takes up a position in a higher energy level.
Explanation: