The elctromagnetic spectrum ranges from the radiowaves to the gamma rays. The whole spectrum is shown in the attached picture. But the optical telescope can only see the visible region. So, it only covers from the 400 nm to 700 nm frequency. It follows the ROYGBIV colors, where red has the highest frequency and violet has the lowest frequency.
There are a few ways to do this- unfortunately different fields are better at it than others! Medical research is generally pretty good, some other fields likewise very good, some not as much.
Basically, though, what they do is use standadisation- they agree on the terminology, units of data, statistical measures, and so forth, that will be used in that scientific field. As much as possible, every scientist in the field uses those standards so everyone working in the field should recognise it.
For instance, in clinical trials, there is very good agreement worldwide on what the different metrics we use are- e.g. in cancer research, we usually want to know the 5-year survival rate (meaning the percentage of patients still alive 5 years after diagnosis). So anyone with the right training should be able to pick up a clinical trial report and understand what the results are and what the report is saying.
Whenever lightning strikes it separates the air where it goes. This air then rushes back together making a loud noise when it connects, creating thunder.
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
When visible light, X rays, gamma rays, or other forms of electromagnetic radiation are shined on certain kinds of matter, electrons are ejected. That phenomenon is known as the photoelectric effect. The photoelectric effect was discovered by German physicist Heinrich Hertz (1857–1894) in 1887. You can imagine the effect as follows: Suppose that a metal plate is attached by two wires to a galvanometer. (A galvanometer is an instrument for measuring the flow of electric current.) If light of the correct color is shined on the metal plate, the galvanometer may register a current. That reading indicates that electrons have been ejected from the metal plate. Those electrons then flow through the external wires and the galvanometer. HOPE THIS HELPED