The answer to this question is that --- The momentum possessed by a body is generally defined as the product of its mass and velocity.
Momentum is a vector and it also has magnitude as it is the product of the multiplication of the mass and velocity.
Einstein's energy mass equivalence relation say that if the whole given mass is converted to energy then it would be

where
m = mass in kg
c = speed of light in m/s
this is the origination of quantum physics and by this formula we can relate the dual nature of light and particle
So correct relation above will be

Air resistance, also called drag, acts upon a falling body by slowing the body down to thr point where it stops accelerating, and it falls at a constant speed, known as the terminal volocity of a falling object. Air resistance depends on the cross sectional area of the object, which is why the effect of air resistance on a large flat surfaced object is much greater than on a small, streamlined object.
Water boiling, no cheamical bonds have been altered.
It's true IF ' m ' stands for mass and ' v ' stands for acceleration. Otherwise it's false.