Answer:
As solute concentration increases, vapor pressure decreases.
Step-by-step explanation:
As solute concentration increases, the number of solute particles at the surface of the solution increases, so the number of <em>solvent </em>particles at the surface <em>decreases</em>.
Since there are fewer solvent particles available to evaporate from the surface, the vapour pressure decreases.
C. and D. are <em>wrong</em>. The vapour pressure depends <em>only</em> on the number of particles. It does not depend on the nature of the particles.
Answer:
15.4 g of sucrose
Explanation:
Formula to be applied for solving these question: colligative property of freezing point depression. → ΔT = Kf . m
ΔT = Freezing T° of pure solvent - Freezing T° of solution
Let's replace data given: 0°C - (-0.56°C) = 1.86 C/m . m
0.56°C / 1.86 m/°C = m → 0.301 mol/kg
m → molality (moles of solute in 1kg of solvent)
Our mass of solvent is not 1kg, it is 150 g. Let's convert it from g to kg, to determine the moles of solute: 150 g. 1kg/1000g = 0.150 kg
0.301 mol/kg . 0.150kg = 0.045 moles.
We determine the mass of sucrose, by the molar mass:
0.045 mol . 342 g/1mol = 15.4 g
Answer:
The answer is
<h2>1.38 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass of liquid = 138 g
volume = 100 mL
The density of the liquid is

We have the final answer as
<h3>1.38 g/mL</h3>
Hope this helps you
Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals
A. If an objects velocity is decreasing, the object is said to be decelerating not accelerating.
B. If an objects velocity changes, it is either experiencing acceleration or deceleration
C. If an object is said to be decelerating, its velocity must be decreasing.
D. If an objects velocity remains constant, its acceleration is zero.
∴ B is correct