B should be 20 because only 1 oxygen goes into water
C is hydrogen because 2 hydrogens go into each water
Can't read anything beyond c
Answer:
T2 = 29°C
Explanation:
Given data:
Heat added = 420 j
Mass of water = 25 g
Initial temperature = 25°C
Final temperature = ?
Solution;
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water = 4.18 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values.
420 j = 25 g ×4.18 j/g.°C × (Final temperature - initial temperature)
420 j = 25 g ×4.18 j/g.°C × (T2 - 25°C)
420 j = 104.5 j/°C × (T2 - 25°C)
420 j /104.5 j/°C = T2 - 25°C
4°C + 25°C = T2
T2 = 29°C
Answer:
d. The energy required to evaporate 1 kg of liquid water equals the energy released when 1 kg of water vapor condenses into liquid.
Explanation:
Hello,
Since we're considering the same amount of water, the vapor phase has a higher energy content than the liquid phase, thus, for the specified amount of water particles (those contained in the given 1 kg) the energy MUST be same when taking them either to a gaseous phase or to a liquid phase, the only difference is the sign which is negative from gaseous to liquid (heat withdrawal) and positive from liquid to gaseous (heat adding).
Best regards.
Answer:
C. Between 0 and 1 seconds
Explanation:
Since 0 - 1 seconds the car accelerates to 20mph. The rest each second the car accelerates 5mph.