From the ideal gas law, PV = nRT, we can rearrange the equation to solve for T given the other parameters.
T = PV/nR
where P = 0.878 atm, V = 1.20 L, n = 0.0470 moles, and R = 0.082057 L•atm/mol•K. Plugging in our values, we obtain the temperature in Kelvin:
T = (0.878 atm)(1.20 L)/(0.0470 mol)(0.082057 L•atm/mol•K)
T = 273 K
So, the second answer choice would be correct.
Answer:
Probably answer D.
Explanation:
It makes the most sense because it's just changing the temp of the water
Answer:
To the right
Explanation:
CH₃OH(g) + heat <=> CO(g) + 2H₂(g)
According to Le Chatelier's principle, a decrease in pressure will shift the equilibrium position to the side where there is a higher volume.
From the balanced equation above,
Volume of reactant = 1
Volume of product = 1 + 2 = 3
From the above, we can see that the volume of the gasous product is higher than the volume of the gasous reactant.
Therefore, a decrease in the pressure of the system will shift the equilibrium position to the right.
Answer:
i believe its precipitation??
Explanation: