The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>
Answer:
7.5 cm
Explanation:
In the figure we can see a sketch of the problem. We know that at the bottom of the U-shaped tube the pressure is equal in both branches. Defining
Ethyl alcohol density and
Glycerin density , we can write:

Simplifying:

On the other hand:

Rearranging:

Replacing (2) in (1):

Rearranging:

Data:



Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω = 
ω = 2.78 rad/s
Answer:
32km per hour
Explanation:
Explanation:
In first case v = a t
==> a t = 40 km p h
Now distance covered S1 + S2 + S3
S1 = 1/2 a t^2 and S3 = 1/2 a t^2
But S2 = 3t * 40 = 120 t km
Hence total distance = at^2 + 120 t
Time taken (total) = t + 3t + t = 5 t
Hence average speed = at^2 + 120 t / 5 t
Cancelling t we have at + 120 / 5 = 40 + 120 / 5 = 160/5 = 32 km per hour