<h3><u>Answer</u>;</h3>
= F0 L ( 1 - 1/e )
<h3><u>Explanation;</u></h3>
Work done is given as the product of force and distance.
In this case;
Work done = ∫︎ F(x) dx
= F0 ∫︎ e^(-x/L) dx
= F0 [ -L e^(-x/L) ] between 0 and L
= F0 L ( 1 - 1/e )
Answer:
D
Explanation:
Because I just had that answer
Sorry I didn't see this before...
Okay, I see two major problems with this student's experiment:
1) Nitric acid Won't Dissolve in Methane
Nitric acid is what's called a mineral acid. That means it is inorganic (it doesn't contain carbon) and dissolves in water.
Methane is an organic molecule (it contains carbon). It literally cannot dissolve nitric acid. Here's why:
For nitric acid (HNO3) to dissolve into a solvent, that solvent must be polar. It must have a charge to pull the positively charged Hydrogen off of the Oxygen. Methane has no charge, since its carbon and hydrogens have nearly perfect covalent bonds. Thus it cannot dissolve nitric acid. There will be no solution. That leads to the next problem:
2) He's Not actually Measuring a Solution
He's picking up the pH of the pure nitric acid. Since it didn't dissolve, what's left isn't a solution—it's like mixing oil and water. He has groups of methane and groups of nitric acid. Since methane is perfectly neutral (neither acid nor base), the electronic instrument is only picking up the extremely acidic nitric acid. There's no point to what he's doing.
Does that help?
Answer:
0.625 c
Explanation:
Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.
In the context,
The relative speed of body 2 with respect to body 1 can be expressed as :

Speed of rocket 1 with respect to rocket 2 :



Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c