Answer:
x = 4.32 [m]
Explanation:
We must divide this problem into three parts, in the first part we must use Newton's second law which tells us that the force is equal to the product of mass by acceleration.
∑F = m*a
where:
F = force = 700 [N]
m = mass = 2030 [kg]
a = acceleration [m/s²]
Now replacing:
![F=m*a\\700=2030*a\\a = 0.344[m/s^{2}]](https://tex.z-dn.net/?f=F%3Dm%2Aa%5C%5C700%3D2030%2Aa%5C%5Ca%20%3D%200.344%5Bm%2Fs%5E%7B2%7D%5D)
Then we can determine the final speed using the principle of conservation of momentum and amount of movement.

where:
m₁ = mass of the car = 2030 [kg]
v₁ = velocity at the initial moment = 0 (the car starts from rest)
Imp₁₋₂ = The impulse or momentum (force by the time)
v₂ = final velocity after the impulse [m/s]
![(2030*0) + (700*5)=(2030*v_{2})\\3500 = 2030*v_{2}\\v_{2}=1.72[m/s]](https://tex.z-dn.net/?f=%282030%2A0%29%20%2B%20%28700%2A5%29%3D%282030%2Av_%7B2%7D%29%5C%5C3500%20%3D%202030%2Av_%7B2%7D%5C%5Cv_%7B2%7D%3D1.72%5Bm%2Fs%5D)
Now using the following equation of kinematics, we can determine the distance traveled.

where:
v₂ = final velocity = 1.72 [m/s]
v₁ = initial velocity = 0
a = acceleration = 0.344 [m/s²]
x = distance [m]
![1.72^{2}=0^{2} +(2*0.344*x) \\2.97 = 0.688*x\\x = 4.32 [m]](https://tex.z-dn.net/?f=1.72%5E%7B2%7D%3D0%5E%7B2%7D%20%2B%282%2A0.344%2Ax%29%20%5C%5C2.97%20%3D%200.688%2Ax%5C%5Cx%20%3D%204.32%20%5Bm%5D)
The answer is 5kg m/s with the second momentum being 10 kg m/s. i took the test and it was right. hope this helps yalls
Answer:
C. 2.5 A
Explanation:
Transformer: A transformer is an electromechanical device that is used to change the voltage of an alternating current.
The current and the number of loops in a transformer is related as shown below
Ns/Np = Ip/Is........................... Equation 1
Where Ns = Secondary loop, Np = primary loop, Ip = primary current, Is = secondary current.
Making Is the subject of the equation
Is = NpIp/Ns........................ Equation 2
Given: Np = 10 loops, Ns = 20 loops, Ip = 5.0 A.
Substitute into equation 2
Is = (10×5.0)/20
Is = 50/20
Is = 2.5 A.
Hence the current in the primary coil = 2.5 A.
The right option is C. 2.5 A
Answer:
The oscillation frequency of the spring is 1.66 Hz.
Explanation:
Let m is the mass of the object that is suspended vertically from a support. The potential energy stored in the spring is given by :

k is the spring constant
x is the distance to the lowest point form the initial position.
When the object reaches the highest point, the stored potential energy stored in the spring gets converted to the potential energy.

Equating these two energies,

.............(1)
The expression for the oscillation frequency is given by :

(from equation (1))

f = 1.66 Hz
So, the oscillation frequency of the spring is 1.66 Hz. Hence, this is the required solution.
Answer:
D,B,C,A,C
Explanation:
I believe that is the correct answers but it is unclear. I don't think the key for the second last question would let the current flowing so the bulb would be off.