Explanation:
<h3>PLA is a polyester produced by fermentation under controlled conditions of a carbohydrate source like corn starch or sugarcane. ... The starch is then mixed with acid or enzymes and heated. This process “breaks” starch into dextrose (D-glucose), or corn sugar.</h3>
<h3>PLA is a polymer made from high levels of polylactic acid molecules. </h3><h3>For PLA to biodegrade, you must break up the polymer by adding </h3><h3>water to it (a process known as hydrolyzing). Heat and moisture are required for hydrolyzing to occur.</h3>
<h3>PLA consists of renewable raw materials and is biodegradable in industrial composting plants. </h3><h3>However, due to the lack of infrastructure, it is difficult to </h3><h3>compost PLA industrially or to</h3><h3> recycle it.</h3>
Answer:
i think by their salinity (the saltiness or amount of salt dissolved in a body of water)
Explanation:
Water salinity is measured by passing an electric current between the two electrodes of a salinity meter in a sample of water.
Im a bit torn here, lets look at the definitions of physical and chemical changes:
physical change changes only the phase/state of a substance, but not what the substance is
chemical change is a chemical reaction where a new substance is formed and energy is given off or absorbed.
(it just started raining and it smells really nice out my window)
clearly, this cannot be just a physical reaction. i think i would be inclined to pick B. but C. could have merit as an answer too. sorry for the ambiguity x
What is the exoeruent. Searched it up on google and only came up with two search results. None related to chemistry
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.