Answer:
C. hydrogen bonding
Explanation:
Ammonia and hydrogen fluoride are both able to exhibit hydrogen bonding due to containing nitrogen (in ammonia) and fluoride (obviously in hydrogen fluoride). Remember the unique qualities of NOF. :)
Many transition metal ions(e.g. in soluble salt solutions) give colored hydroxide precipitates when mixed with aqueous sodium hydroxide solution. However zinc ions give a white hydroxide precipitate. These reactions can be used to help identify transition metal ions in solution.
<span />
An atom is the smallest thing ever known to exist. It can only be seen by the eye of a type of telescope.
Answer:
a) [H₃O⁺] = 1.8x10⁻⁵ M
b) pH = 4.75
c) % rxn = 3.5x10⁻³ %
Explanation:
a) The dissociation reaction of HCN is:
HCN(aq) + H₂O(l) ⇄ H₃O⁺(aq) + CN⁻(aq)
0.5 M - x x x
The dissociation constant from the above reactions is given by:


By solving the above quadratic equation we have:
x = 1.75x10⁻⁵ M = 1.8x10⁻⁵ M = [H₃O⁺] = [CN⁻]
Hence, the [H₃O⁺] is 1.8x10⁻⁵ M.
b) The pH is equal to:
Then, the pH of the HCN solution is 4.75.
c) The % reaction is the % ionization:

Therefore, the % reaction or % ionization is 3.5x10⁻³ %.
I hope it helps you!
Answer:
The equilibrium will move in forward direction.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.

On addition of base at the equilibrium, the hydroxide ions of the base will neutralize the hydrogen ions and lowering in concentration of hydrogen ion will be observed.
So, on lowering of concentration of hydrogen ions the equilibrium will move in direction in accordance to Le Chatelier’s Principle .The equilibrium will move in forward direction.