Answer:
Covalent
Explanation:
A molecule of C₂H₅OH has C-C, C-H, C-O, and O-H bonds.
A bond between A and B will be ionic if the difference between their electronegativities (ΔEN) is greater than 1.6.

No bond has a large enough ΔEN to be ionic.
C₂H₅OH is a covalent molecule.
Potassium oxide is an ionic compound. The potassium has a charge of <span>K+</span> and oxygen has a charge of <span>O<span>2−</span></span>. We need 2 potassium ions to balance one oxide ion making the formula <span><span>K2</span>O</span>.
Potassium hydroxide is an ionic compound. The potassium has a charge of <span>K+</span> and hydroxide has a charge of <span>OH−</span>. We need 1 potassium ion to balance one hydroxide ion making the formula KOH.
<span><span>K2</span>O+<span> H2</span>O→KOH</span>
To balance the equation we place a coefficient of 2 in front of the potassium hydroxide.
<span><span>K2</span>O+<span>H2</span>O→2KOH</span>
I hope this was helpful.
Answer:
Cs
Explanation:
Metallic character increases across a period to the left and downwards.
If you look at the periodic table, Cs is lower and more towards the left.
Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂