Answer:
Correct choice are C and D (they are both, the same).
Explanation:
Cathode is the positive(+) electrode where a reduction occurs.
Reduction is the chemical reaction where the oxidation state is reduced.
2Ag(s) + 1/2 O2(g) + 2H+(aq) → 2Ag+(aq) + H2O (l)
A. 2H2O (l) → O2 (g) + 4H+ (aq) + 4e-
B. 2Ag (s) → 2Ag+ (aq) + 2e-
C. 1/2 O2 (g) + 2H+ (aq) + 2e- → H2O (l)
D. 1/2 O2 (g) + 2H+ (aq) + 2e- → H2O (l)
C or D, are ok. They are the same equation.
Oxygen from ground state reduce the oxidation state from 0 to -2
Br2 experiences dipole-dipole interactions. ICl experiences dipole-dipole interactions. Br2 forms hydrogen bonds. ICl experiences induced dipole-induced dipole interactions.
1.Decomposition i think
2.boiling
3.It is a solid at room temperature and pressure.
4.<span>The base donates a hydrogen ion.
5.That causes the oxidation of another element
6.</span>MnO2
7.When a substance is reduced, electrons are lost.
8.True I think
9.False
10.True
Hope these are correct
Elements with three p-electrons....
That would be N, P, As, Sb, and Bi -- elements in group 15
For example, energy diagram showing "empty" orbitals up through the 3p.
.....3p __ __ __
3s __
.....2p __ __ __
2s __
1s __
Energy diagram of phosphorous showing three unpaired electrons in 3p-sublevel
.....3p ↑_ ↑_ ↑_
3s ↑↓
.....2p ↑↓ ↑↓ ↑↓
2s ↑↓
1s ↑↓
According to Hund's rule, the electrons singly occupy the p-orbitals, and all have the same spin.
Answer: The empirical formula is 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of Br= 58.37 g
Mass of F = (100-58.37) = 41.63 g
Step 1 : convert given masses into moles.
Moles of Br=
Moles of F =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Br = 
For F = 
The ratio of Br: F= 1 : 3
Hence the empirical formula is 