1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
January 19
Explanation:
every first 7 days of a month the moon roughly starts its full moon phase
1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N. Details about number of atoms can be found below.
How to calculate number of atoms?
The number of atoms of a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
However, the number of moles of oxygen in glycine can be calculated using the following expression:
Molar mass of C₂H5O2N = 75.07g/mol
Mass of oxygen in glycine = 32g/mol
Hence; 32/75.07 × 7.51 = 3.2grams of oxygen in glycine
Moles of oxygen = 3.2g ÷ 16g/mol = 0.2moles
Number of atoms of oxygen = 0.2 × 6.02 × 10²³ = 1.205 × 10²³ atoms
Therefore, 1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
Answer:
Mass = 179.9 g
Explanation:
Given data:
Volume of solution = 450 mL
Molarity of solution = 2.00 M
Mass in gram required = ?
Solution:
Volume of solution = 450 mL× 1 L / 1000 mL = 0.45 L
Molarity = number of moles of solute/ Volume of solution in L
2.00 M = number of moles of solute / 0.45 L
Number of moles of solute = 2.00 M × 0.45 L
M = mol/L
number of moles of solute = 0.9 mol
Mass of CaBr₂ in gram:
Mass = number of moles × molar mass
Mass = 0.9 mol ×199.89 g/mol
Mass = 179.9 g