I’m sorry but I just wanted to say to my friends that you are not doing anything for you and you have a really nice night
Answer:
The average kinetic energy of A is greater than that of B.
Explanation:
The temperature of an object is directly proportional to the average kinetic energy of the particles in the object. For instance, for an ideal gas, we have

where
KE is the kinetic energy
k is the Boltzmann constant
T the absolute temperature of the gas
Therefore, this means that in a hotter object the average kinetic energy of the particles is higher than the average kinetic energy of the particles in a colder object.
Moreover, the laws of thermodynamics tell us that heat is always transferred from a hotter object (higher temperature) to a colder object (lower temperature).
In this problem heat is transferred from sample A to sample B. Therefore, this means that object A has higher temperature, and therefore, higher average kinetic energy. So the correct answer is
The average kinetic energy of A is greater than that of B.
Answer:
No.
Explanation:
The reason comes the <em>Law of Conservation of Mass</em>.
In an ordinary chemical reaction, <em>you cannot create or destroy atoms</em>.
So, you must have as many atoms at the beginning of a reaction (in the reactants) as at the end (in the products)
We use this principle to balance chemical equations.
For example, the equation for the formation of water from hydrogen and oxygen is
2H₂ + O₂ ⟶ 2H₂O
There are four atoms of H and two of O both before and after the reaction.
Answer:
Its a 50% chance of it happeing
Explanation:
The correct answer of the given question above would be option B. IRON 0.449. Based on the given details above about an unknown substance that has a mass of 14.7 g and the substance absorbs 1.323×102 J of heat, the temperature of the substance is raised from 25.0 ∘C to45.0 ∘C, most likely, the substance is IRON. Hope this answers the question.