Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL
Answer:
Oxygen is not released into the atmosphere
-The marine sediments are formed into rocks by Earth's geologic processes
A) 2, 3 , 2 simply valence the rest
Answer:
0.0010m SO₄²⁻
Explanation:
The freezing point depression due the addition of a solute into a pure solvent follows the equation:
ΔT = Kf×m×i (1)
<em>Where ΔT are °C that freezing point decreases (273.15K - 272.47K = 0.68K = 0.68°C). Kf is the constant of freezing point depression (1.86°C/m), m is molality of the solution (0.1778m) and i is Van't Hoff factor.</em>
Van't Hoff factor could be understood as in how many one mole of the solute (sulfuric acid, H₂SO₄), is dissociated.
H₂SO₄ dissociates as follows:
H₂SO₄ → HSO₄⁻ + H⁺
HSO₄⁻ ⇄ SO₄²⁻ + H⁺
<em>Not all HSO₄⁻ dissociates.</em>
1 Mole of H₂SO₄ dissociates in 1 mole of H⁺+ 1 mole of HSO₄⁻ + X moles of SO₄²⁻= 2 + X
Replacing in (1):
0.68°C = 1.86°C/m×0.1778m×i
2.056 = i
Moles of SO₄²⁻ are 2.056 - 2 = 0.056moles SO₄²⁻.
If 1 mole has a concentration of 0.1778m, 0.056moles are:
0.056moles ₓ (0.1778m / 1mole) =
<h3>0.0010m SO₄²⁻</h3>