<h3>
Answer:</h3>
2.04 mol CBr₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Organic</u>
- Writing Organic Compounds
- Writing Covalent Compounds
- Organic Prefixes
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
675 g CBr₄
<u>Step 2: Identify Conversions</u>
Molar Mass of C - 12.01 g/mol
Molar Mass of Br - 79.90 g/mol
Molar Mass of CBr₄ - 12.01 + 4(79.90) = 331.61 g/mol
<u>Step 3: Convert</u>
<u />
<u />
<u />
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2.03552 mol CBr₄ ≈ 2.04 mol CBr₄
Geometry name is trigonal bypyramidal
non-polar
Answer:
Explanation:
It can be determined by measuring the Ph. D is incorrect.
C: is wrong because if you are making something acidic, you are increasing the H+
B: is the correct answer.
A: pH decreases. H+ increases which makes the Ph decrease. It is an oddity of the formula that makes this happen.
Carbon-14 is a radioactive isotope used to date organic material. Its consistent rate of decay allows the age of an object to be determined by the proportion of carbon-14 to other carbon isotopes. This process is called radiocarbon dating. Carbon-14 is also used as a radioactive tracer for medical tests.