Answer:
All offspring are tall when a homozygous tall parent with homozygous short parent.
Explanation:
When we crossed homozygous tall parent with homozygous short parent, we conclude that all offspring are tall, because homozygous short parent are supressed under the homozygous tall parent, due to law of dominance.
Law of dominance states that, recessive alleles are suppressed by dominant alleles but they can appear in F2 generation.
Using a punett square, we can predict the cross between homozygous tall and homozygous short parent.
The phenotypes are: All are tall plants (4:0).
I believe it is A)fuel is more readily available:)
Explanation:
Rutherford conducted an experiment in which he took a thin gold particle film on which he passes alpha- particles. He noticed that:
- Most of the alpha particles get through the film and can be detected by the detector.
- Around small portion of the alpha particle deflected at small angles.
- A very very few alpha particle (approximately 1 out of 1 million alpha particles) just retraced their path which means come back from the center.
He concluded that:
<u>Most of the space of the atom is empty and in the center of the atom , there is solid mass which is the cause of the alpha particles to come back. He gave the term nucleus to this solid mass.</u>
Answer:
B. Intermolecular forces are hard to overcome
Explanation:
A high boiling point indicates greater inter molecular forces between the molecules of the substance. Inter molecular forces is the force of attraction between the molecules of the substance, which has to be overcome or broken before the substance boils. Example, when water boils, the water molecule (H₂O) will be broken into hydrogen molecule and oxygen molecule.
Therefore, a high boiling point temperature indicates that intermolecular forces of the substance are hard to overcome.
B. Intermolecular forces are hard to overcome
Formula for calculation of neutrons is Mass number - atomic number, here values are given. By putting values in formula 76-35= 41. Number of neutrons 41