Hello!!
Here we have a simple matter of conservation of energy. ME=PE+KE.
At point A we have PE=mgh and KE=1/2mv^2. At point A all we have is PE since the coaster isn’t rolling yet. But by conservation of energy, we know that it will have enough energy to roll down and get to and equal height on another hill. Providing we are neglecting friction and drag and resistance forces which we are in this case. So we can conclude that the KE will be greater at Point B since ME=PE+KE and for ME to remain the same and we know the PE is less on lower hill, so we can conclude that KE on lower hill is greater to keep ME the same and have conservation of energy.
Hope this helps you understand the concept!! Any questions please just ask!! Thank you so much!!
Sprains/Strains, tears to muscles, tendons ligaments, not hypothermia bc thats when you get really cold and not dehydrated
We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:
Explanation:
height of Ellipse
i.e.
Width of Ellipse 
i.e.
Equation of a vertical Ellipse is
at
Recall the definition of the cross product with respect to the unit vectors:
i × i = j × j = k × k = 0
i × j = k
j × k = i
k × i = j
and that the product is anticommutative, so that for any two vectors u and v, we have u × v = - (v × u). (This essentially takes care of part (b).)
Now, given a = 8i + j - 2k and b = 5i - 3j + k, we have
a × b = (8i + j - 2k) × (5i - 3j + k)
a × b = 40 (i × i) + 5 (j × i) - 10 (k × i)
… … … … - 24 (i × j) - 3 (j × j) + 6 (k × j)
… … … … + 8 (i × k) + (j × k) - 2 (k × k)
a × b = - 5 (i × j) - 10 (k × i) - 24 (i × j) - 6 (j × k) - 8 (k × i) + (j × k)
a × b = - 5k - 10j - 24k - 6i - 8j + i
a × b = -5i - 18j - 29k