The sign of ΔSsys for a solid explosive converts to a gas is positive.
The term used for the measurement of randomness and disorderliness in a system is known as Entropy (S). ΔS calculates the change in entropy and it is positive when entropy increase and negative when entropy decreases.
Entropy increases when heat is added to the system. Addition of heat increases the randomness of the molecules and hence the entropy increases.
When a solid explosive converts to a gas the randomness increases. Explosive causes heat and the solid is converted into gas. The randomness of molecules is maximum in gases thus the entropy increases. The sign of ΔS is positive for this process.
If you need to learn more about the signs of ΔSsys, click here
brainly.com/question/14250855
#SPJ4
This is an incomplete question, here is a complete question.
Determine which of the acids are Arrhenius acids, Brønsted–Lowry acids, and Lewis acids. It is possible for an acid to be of more than one type. Which acids are Arrhenius acids?
AlCl₃ (aq)
BCl₃ (aq)
HCl (aq)
Answer :
HCl is an Arrhenius acid and Bronsted Lowry acid
AlCl₃ is a Lewis-acid
BCl₃ is a Lewis-acid
Explanation :
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions
when dissolved in water and an acid is defined as a substance which donates hydronium ions
in water.
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
From this we conclude that:
HCl is an Arrhenius acid because it donates hydrogen ion and also Bronsted Lowry acid because it also donate protons.
AlCl₃ is a Lewis-acid because it is a electron deficient and accept lone pair of elections.
BCl₃ is a Lewis-acid because it is a electron deficient and accept lone pair of elections.
Answer:
1. Yes
2.The solubility of X is 34.55g/L
Explanation:
Solubility of solute refers to how readily a solute will dissolve in a solvent at a particular temperature. Its the amount of moles or grams required to saturate 1dm
or 1 Litre of water.
From the problem, when the liquid was drained off and amount of X which didn't dissolve was measured, it weighed 0.008kg, this means out of 0.027kg, 0.027-0.008 actually dissolved
= 0.019kg*1000 = 19g.
if 19g is required to saturate 550mL at 30°C,
then
will saturate 1L
= 34.545g will saturate 1Litre
The solubility thus is 34.55g/L
The new pH is 7.69.
According to Hendersen Hasselbach equation;
The Henderson Hasselbalch equation is an approximate equation that shows the relationship between the pH or pOH of a solution and the pKa or pKb and the ratio of the concentrations of the dissociated chemical species. To calculate the pH of the buffer solution made by mixing salt and weak acid/base. It is used to calculate the pKa value. Prepare buffer solution of needed pH.
pH = pKa + log10 ([A–]/[HA])
Here, 100 mL of 0.10 m TRIS buffer pH 8.3
pka = 8.3
0.005 mol of TRIS.
∴ ![8.3 = 8.3 + log \frac{[0.005]}{[0.005]}](https://tex.z-dn.net/?f=8.3%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005%5D%7D%7B%5B0.005%5D%7D)
<em> </em>inverse log 0 = ![\frac{[B]}{[A]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
![\frac{[B]}{[A]} = 1](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%20%3D%201)
Given; 3.0 ml of 1.0 m hcl.
pka = 8.3
0.003 mol of HCL.
![pH = 8.3 + log \frac{[0.005-0.003]}{[0.005+0.003]}\\pH = 8.3 + log \frac{[0.002]}{[0.008]}\\\\pH = 8.3 + log {0.25}\\\\pH = 8.3 + (-0.62)\\pH = 7.69](https://tex.z-dn.net/?f=pH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.005-0.003%5D%7D%7B%5B0.005%2B0.003%5D%7D%5C%5CpH%20%3D%208.3%20%2B%20log%20%5Cfrac%7B%5B0.002%5D%7D%7B%5B0.008%5D%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20log%20%7B0.25%7D%5C%5C%5C%5CpH%20%3D%208.3%20%2B%20%28-0.62%29%5C%5CpH%20%3D%207.69)
Therefore, the new pH is 7.69.
Learn more about pH here:
brainly.com/question/24595796
#SPJ1