Answer:
A) 
Explanation:
m = Mass of water = 38.9
M = Molar mass of water = 18 g/mol
= Avogadro's number = 
The reaction of electrolysis would be

Number of moles of 

From the reaction it can be seen that 2 moles of
gives 1 mole of 
So, number of moles of
produced is

Number of molecules

So,
of oxygen is produced.
Some of the salt would settle out. When the water was heated, it was able to absorb more salt than usual. This is known as super saturation. When the water is frozen it cannot hold as much salt, so some of it has to come out.
The true statement about the balanced equations for nuclear and chemical changes is; both are balanced according to the total mass before and after the change.
A basic law in science is called the law of conservation of mass. Its general statement is that mass can neither be created nor destroyed.
Both in chemical and nuclear changes, mass is involved and in both cases, the law of conservation of mass strictly applies.
This means that for both chemical and nuclear changes; total mass before reaction must be equal to total mass after reaction.
Hence, both reactions are balanced according to the total mass before and after the change.
Learn more: brainly.com/question/22064431
To solve this we assume
that the gas inside is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
T2 = T1 x V2 / V1
T2 = 280 x 20.0 / 10
<span>T2 = 560 K</span>
Physical properties of matter