You can use the impulse momentum theorem and just subtract the two momenta.
P1 - P2 = (16-1.2)(11.5e4)=1702000Ns
If you first worked out the force and integrated it over time the result is the same
Answer:
- Increases levels of well-being neurotransmitters
- Improves fitness
- Improves mental health
- Reduces the risk of developing diseases
Explanation:
Performing physical activities helps to build a healthy relationship with yourself, in the sense that physical activity promotes health at all levels. Health is a set of physical, mental and social well-being, so physical activity reaches all these levels and increases the quality of life for a person as a whole.
There are several types of physical activities that can be performed and you can choose the one that best fits your preferences and routine. A walk for example can be done in any safe place and at any time and it already helps in improving physical conditioning, in receiving serotonin and endorphins, in reducing blood pressure and protecting the heart and in improving mental health.
So the ideal is for each person to set their own goals in relation to their health and seek to achieve them, either to have a better quality of life, to socialize more with people, to prevent diseases, etc.
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
chromatic aberration problem do refractor telescopes have that reflectors don't
<u>Explanation:</u>
Chromatic aberration is a phenom in which light rays crossing through a lens focus at various points, depending on their wavelength. Chromatic aberration is a dilemma in which lens or refracting, telescopes undergo from. The various image distances for the respective colors affect various image sizes for them.
This involves the creation of disturbing color fringes in the image. Chromatic aberration can be pretty well adjusted by the use of an achromatic doublet. Here, a positive biconvex lens is coupled with a negative lens placed backward with greater dispersion. Thus partly compensates for the chromatic aberration.