A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.
Read more on Brainly.com - 
brainly.com/question/18743384#readmore
 
        
             
        
        
        
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance 

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
 
        
             
        
        
        
Answer:
Explanation:
Given
n=5
0.3 fraction recrystallize after 100 min 
According to Avrami equation

where y=fraction Transformed
k=constant
t=time


Taking log both sides


At this Point we want to compute 



taking log both sides



Rate of Re crystallization at this temperature
