The hero attending a funeral is safe behavior while the hero driving fast is riskier behavior
Answer:
The deflection of the spring is 34.56 mm.
Explanation:
Given that,
Diameter = 10 mm
Number of turns = 10


Load = 200 N
We need to calculate the deflection
Using formula of deflection

Put the value into the formula


Hence, The deflection of the spring is 34.56 mm.
Answer:
a) P = 807.85 N, b) P = 392.15 N, c) P = 444.12 N
Explanation:
For this exercise, let's use Newton's second law, let's set a reference frame with the x-axis parallel to the plane and the direction rising as positive, and the y-axis perpendicular to the plane.
Let's use trigonometry to break down the weight
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
Wₓ = 1200 sin 30 = 600 N
W_y = 1200 cos 30 = 1039.23 N
Y axis
N- W_y = 0
N = W_y = 1039.23 N
Remember that the friction force always opposes the movement
a) in this case, the system will begin to move upwards, which is why friction is static
P -Wₓ -fr = 0
P = Wₓ + fr
as the system is moving the friction coefficient is dynamic
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = 600+ 207.85
P = 807.85 N
b) to avoid downward movement implies that the system is stopped, therefore the friction coefficient is static
P + fr -Wx = 0
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = Wₓ -fr
P = 600 - 207,846
P = 392.15 N
c) as the movement is continuous, the friction coefficient is dynamic
P - Wₓ + fr = 0
P = Wₓ - fr
fr = 0.15 1039.23
fr = 155.88 N
P = 600 - 155.88
P = 444.12 N
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.