Answer:
An image is formed on the retina with light rays converging most at the cornea and upon entering and exiting the lens. Rays from the top and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller than scale
Answer:
1. the pencil would have the momentum and would keep going until it hits the windshield. 2. when the car suddenly accelerates, the pencil would be inert and it would move toward the back of the car until a constant speed from the car is reached.
The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.
<h3>What is mechanical energy?</h3>
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
A boy is trying to roll a bowling ball up a hill. The friction is ignored. The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²
The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.
M.E bottom of hill = M.E on top of hill
Kinetic energy + Potential energy = Kinetic energy + Potential energy
1/2 mu² + 0 = 0 + mgh
At the top of hill, the velocity will become zero. So, final kinetic energy is zero.
Substituting the values, we have
1/2 x u² = 9.8 x 22.5
u = sqrt [2 x9.8 x 22.5 ]
u= 21 m/s
Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.
Learn more about mechanical energy.
brainly.com/question/13552918
#SPJ1
Because they are mentally trying to extinguish the negative things in their lives and focus on the positive things
Answer:
a) k = 120 N / m
, b) f = 0.851 Hz
, c) v = 1,069 m / s
, d) x = 0
, e) a = 5.71 m / s²
, f) x = 0.200 m
, g) Em = 2.4 J
, h) v = -1.01 m / s
Explanation:
a) Hooke's law is
F = k x
k = F / x
k = 24.0 / 0.200
k = 120 N / m
b) the angular velocity of the simple harmonic movement is
w = √ k / m
w = √ (120 / 4.2)
w = 5,345 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 5.345 / 2π
f = 0.851 Hz
c) the equation that describes the movement is
x = A cos (wt + Ф)
As the body is released without initial velocity, Ф = 0
x = 0.2 cos wt
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum for sin wt = ±1
v = A w
v = 0.200 5.345
v = 1,069 m / s
d) when the function sin wt = -1 the function cos wt = 0, whereby the position for maximum speed is
x = A cos wt = 0
x = 0
e) the acceleration is
a = d²x / dt² = dv / dt
a = - Aw² cos wt
The acceleration is maximum when cos wt = ± 1
a = A w²
a = 0.2 5.345
a = 5.71 m / s²
f) the position for this acceleration is
x = A cos wt
x = A
x = 0.200 m
g) Mechanical energy is
Em = ½ k A²
Em = ½ 120 0.2²
Em = 2.4 J
h) the position is
x = 1/3 A
Let's calculate the time to reach this point
x = A cos wt
1/3 A = A cos 5.345t
t = 1 / w cos⁻¹(1/3)
The angles are in radians
t = 1.23 / 5,345
t = 0.2301 s
Speed is
v = -A w sin wt
v = -0.2 5.345 sin (5.345 0.2301)
v = -1.01 m / s
i) acceleration
a = -A w² sin wt
a = - 0.2 5.345² cos (5.345 0.2301)
a = -1.91 m / s²