Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Not really sure but...
<span>A metaphysical poet is a writer whose </span>focus is on universal human experiences.
hope this helps!...
A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5
c. RMS speed = √(848.5/15) = 7.521
Most likely the speed is the peak in the speed distribution, which is 7.
Answer:
The correct options are;
Both involve the formation of solid particles from nebular materials
Both involve the work of gravitational push on nebular materials
Explanation:
Planetesimals are thought to be the product of grains of cosmic dusts that are found in the debris and protoplanetary discs, such that hundreds of planet forming embrayos are considered to be the result of the collisions of planetesimals that collide with each other to form larger embrayos
Protoplanets is a large planetary body with a stratified interior due to internal melting that has taken place. They originate in the protoplanetary discs from the collision of planetesimals that are up to a kilometer in size.