Answer: PV = nRT
A gas at STP... This means that the temperature is 0°C and pressure is 1 atm.
R is the gas constant which is 0.08206 L*atm/(K*mol)
Rearranging for volume
V = nRT/P
The temperature and number of moles are held constant. This means that this uses Boyle's Law. (The ideal gas law could be manipulated to give us this result when T and n are held constant.)
PV = k
where k is a constant.
This means that
P₁V₁ = k = P₂V₂
P₁V₁ = P₂V₂
(1 atm) * (1 L) = (2 atm) * V₂
V₂ = 0.5 L
The new volume of the gas is 0.5 L.
Explanation:
We can use the ideal gas law equation to find the volume occupied by oxygen gas
PV = nRT
where ;
P - pressure - 52.7 kPa
V - volume
n - number of oxygen moles - 12.0 g / 32 g/mol = 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values in the equation
52 700 Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
V = 17.6 L
volume of the gas is 17.6 L
Answer:
The coefficient that should be inserted in front of chlorine is 2
Explanation:
Sn + 2Cl₂ → SnCl₄
As we have 4 atoms of chlorine in product side, we need 4 Cl in reactant side.
Chlorine is a diatomic atom, so if we have 2 mol of it, we are having 4 atoms of Cl.
The law of conservation of mass must be respected in every chemical equation
Answer:
Carbon dioxide
Explanation:
Neither helium nor carbon dioxide has a molecular dipole, so their strongest van der Waals attractive forces are London forces.
Helium is a small spherical atom with only a two electrons, so its atoms have quite weak attractions to each other.
CO₂ is a large linear molecule. It has more electrons than helium, so the attractive forces are greater. Furthermore, the molecules can align themselves compactly side-by-side and maximize the attractions (see below).
For example. CO₂ becomes a solid at -78 °C, but helium must be cooled to -272 °C to make it freeze (that's just 1 °C above absolute zero).
The leathery pad helps the camel because it prevents the camels feet from sinking into the sand.