The apparent velocity is B) 48 m/s north
Explanation:
Here we have a problem of relativity of velocities.
In fact, the train is travelling north at a speed of

where this velocity is measured with respect to the ground.
At the same time, a passenger on the train is walking towards the rear (so, south) at a velocity of

where this velocity is measured with respect to the train, which is in motion in the opposite direction.
Therefore, the apparent velocity of the passenger with respect to an observer standing on the ground is:

And the direction is north, since this number is positive.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Magnetic field direction is given by right hand thumb rule.
If we put our thumb in the direction of current then curl of fingers will show the magnetic field direction around the wire.
Now here since current is going into the screen so we will put our thumb into the screen and then the curl of fingers is clockwise around it.
The magnetic field is clockwise.
So this would be the direction of magnetic field
Answer:
A) If the paintball stops completely the magnitude of the change in the paintball’s momentum is 
B) If the paintball bounces off its target and afterward moves in the opposite direction with the same speed, the change in the paintball’s momentum is 
C) A paintball bouncing off your skin in the opposite direction with the same speed hurts more than a paintball exploding upon your skin because of the strength exerted is twice than if it explodes.
Explanation:
Hi
A) We use the formula of momentum
, so we have 
B) We use the same formula above, then due we have a change of direction at the same speed, therefore the change in the momentum is the double so
.
C) The average strength of the force an object exerts during impact is determined by the amount the object’s momentum changes. therefore
, as we don't have any data about the impact time but we know momentum is twice, time does no matter and strength is twice too.
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V