Answer:
0.011 m.
Explanation:
Energy stored in the spring = Energy of the projectile.
1/2ke² = mgh ................ Equation 1
Where k = spring constant, e = extension or compression, m = mass of the projectile, g = acceleration due to gravity, h = height.
make e the subject of the equation
e = √(2mgh/k)............................. Equation 2
Given: k = 12 N/cm = 1200 N/m, m = 15 g = 0.015 kg, h = 5.0 m
Constant: g = 9.8 m/s²
Substitute into equation 2
e = √(2×0.015×5/1200)
e = √(0.15/1200)
e = √(0.000125)
e = 0.011 m.
The energy transfer in terms of work has the equation:
W = mΔ(PV)
To be consistent with units, let's convert them first as follows:
P₁ = 80 lbf/in² * (1 ft/12 in)² = 5/9 lbf/ft²
P₂ = 20 lbf/in² * (1 ft/12 in)² = 5/36 lbf/ft²
V₁ = 4 ft³/lbm
V₂ = 11 ft³/lbm
W = m(P₂V₂ - P₁V₁)
W = (14.5 lbm)[(5/36 lbf/ft²)(4 ft³/lbm) - (5/9 lbf/ft²)(11 lbm/ft³)]
W = -80.556 ft·lbf
In 1 Btu, there is 779 ft·lbf. Thus, work in Btu is:
W = -80.556 ft·lbf(1 Btu/779 ft·lbf)
<em>W = -0.1034 BTU</em>
If the box is a distance 1.81 m from the rear of the truck when the truck starts,<span> ... Force of Friction = mu_s * Normal Force( </span>M<span> * G) ... The </span>box starts<span> moving! ... Now that the </span>box<span> is moving, the bed of the </span>truck<span> pulls at it with 17.4 ... out how </span>long<span> it will take the </span>box<span> to reach the back of the </span>truck<span>. ... T^2 = 2 * </span>1.81<span> / .64</span>