Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 
Answer:
12.7m/s
Explanation:
Given parameters:
Mass of the diver = 77kg
Height = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we use one of the motion equations.
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 0² + (2 x 9.8 x 8.18)
v² = 160.3
v = 12.7m/s
The formula is:
v = v o + a t
6 = 10 + 3 * a
3 a = 10 - 6
a = 4 : 3
a = - 1.33 m/s² ( because the car slows down )
Answer: The average acceleration of the car is - 1.33 m/s²
True
It is True I took the test