1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
2 years ago
5

A man standing on the Earth can exert the same force with his legs as when he is standing

Physics
1 answer:
statuscvo [17]2 years ago
7 0

Answer:

No

Explanation:

From the analogy of the problem we are made to know that "a man standing on the earth can exert the same force with his legs as when he is standing on the moon".

 This force he is exerting is due to his weight. If he can have the same weight on the earth and moon, therefore:

      weight  = mass x acceleration due gravity

His mass and acceleration due to gravity on both terrestrial bodies are the same.

So, his jump height will be the same on earth and on the moon.

In summary, we have been shown that his mass and the acceleration due to gravity on both planets are the same, therefore, his weight will also be the same. His jump height will also be same.

You might be interested in
And object has traveled 200 m in 20 seconds what is its average speed
BabaBlast [244]
It is going 10m speed
8 0
3 years ago
Students in an introductory physics lab are performing an experiment with a parallel-plate capacitor made of two circular alumin
Zarrin [17]

Answer:

\rm 9.186\times 10^{-7}\ C.

Explanation:

<u>Given:</u>

  • Diameter of the plates of the capacitor, D = 21 cm = 0.21 m.
  • Distance of separation between the plates, d = 1.0 cm = 0.01 m.
  • Minimum value of electric field that produces spark, \rm E=3\times 10^6\ N/C.

When the dimensions of the plate of the capacitor is comparatively much larger than the distance of separation between the plates, then, according to the Gauss' law of electrostatics, the value of the electric field strength in the region between the plates of the capacitor is given by

\rm E=\dfrac{\sigma}{\epsilon_o}.

where,

  • \rm \sigma = surface charge density of the plate of the capacitor = \dfrac qA.
  • \rm q = magnitude of the charge on each of the plate.
  • \rm A = surface area of each of the plate =\rm \pi \times (Radius)^2=\pi \times\left ( \dfrac{D}{2}\right )^2= \pi \times \left ( \dfrac{0.21}{2}\right )^2=3.46\times 10^{-2}\ m^2.
  • \epsilon_o = electrical permittivity of free space, having value = 8.85\times 10^{-12}\rm \ C^2N^{-1}m^{-2}.

For the minimum value of electric field that produces spark,

\rm E = \dfrac{q}{A\epsilon_o}\\\Rightarrow q = E\ A\epsilon_o\\=3\times 10^6\times 3.46\times 10^{-2}\times 8.85\times 10^{-12}\\=9.186\times 10^{-7}\ C.

It is the maximum value of the magnitude of charge which can be added up to each of the plates of the capacitor.

4 0
2 years ago
In the mobile m1=0.42 kg and m2=0.47 kg. What must the unknown distance to the nearest tenth of a cm be if the masses are to be
LuckyWell [14K]

Complete Question

The complete question is shown on the first uploaded image

Answer:

Explanation:

From he question we are told that

    The first mass is   m_1 = 0.42kg

      The second mass is  m_2 = 0.47kg

From the question we can see that at equilibrium the moment about the point where the  string  holding the bar (where m_1 \ and \ m_2 are hanged ) is attached is zero  

   Therefore we can say that

               m_1 * 15cm  = m_2 * xcm

Making x the subject of the formula  

                x = \frac{m_1 * 15}{m_2}

                    = \frac{0.42 * 15}{0.47}

                     x = 13.4 cm

Looking at the diagram we can see that the tension T  on the string holding the bar where m_1  \  and   \ m_2 are hanged  is as a result of the masses (m_1 + m_2)

     Also at equilibrium the moment about the point where the string holding the bar (where (m_1 +m_2)  and  m_3 are hanged ) is attached is  zero

   So basically

          (m_1 + m_2 ) * 20  = m_3 * 30

          (0.42 + 0.47)  * 20 = 30 * m_3

 Making m_3 subject

          m_3 = \frac{(0.42 + 0.47) * 20 }{30 }

                m_3 = 0.59 kg

3 0
3 years ago
Find the range of a projectile launched at an angle of 30° with an initial velocity of 20m/s.​
Tems11 [23]

Answer:

<em>The range is 35.35 m</em>

Explanation:

<u>Projectile Motion</u>

It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.

Being vo the initial speed of the object, θ the initial launch angle, and g=9.8m/s^2 the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

\displaystyle d={\frac  {v_o^{2}\sin(2\theta )}{g}}

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:

\displaystyle d={\frac  {20^{2}\sin(2\cdot 30^\circ )}{9.8}}

\displaystyle d={\frac  {400\sin(60^\circ )}{9.8}}

d=35.35\ m

The range is 35.35 m

7 0
3 years ago
Before Collision Consider a system to be one train car moving toward another train car at rest When the train cars collide, the
erma4kov [3.2K]

Answer:

2,400kg * m/s

Explanation:

You are missing some information in the question but the rest could be found some where else.

The question gives the masses and starting velocity of each car.

Car 1: m = 600kg and sv = 4m/s

Car 2: m 400kg and sv = 0m/s

Find the momentum of both cars.

Car 1: 600 * 4 = 2400

Car 2: 400 * 0 = 0

Add both.

2400 + 0 = 2400

Best of Luck!

7 0
3 years ago
Read 2 more answers
Other questions:
  • 13. A set of pulleys lifts an 800 N crate 4 meters in 7 seconds. What power was used?
    7·2 answers
  • You’ve just discovered that you are blood type O negative, highly valuable because it can be given to almost anyone in a life-th
    15·1 answer
  • Please help me with 1 and 2
    6·1 answer
  • A 10.5 cm long solenoid contains 891 turns and carries a current of 5.95 A . What is the strength of the magnetic field at the c
    8·1 answer
  • Jade and her roommate Jari commute to work each morning, traveling west on I-10. One morning Jade left for work at 6:45 A.M., bu
    15·1 answer
  • 3. A student pushed a 10.0 kg box across a level, frictionless floor with an acceleration of 5.00 m/s.
    15·2 answers
  • Which is a property of bases?
    8·2 answers
  • Someone help me please.
    14·1 answer
  • An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement fr
    15·1 answer
  • A generator coil is rotated one quarter of a full revolution, from θ = 0° to θ = 90°,
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!