Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
The answer is 23, 040 minutes. To solve this you can start by changing days in to hours. We know that there are 24 hours in a day. To find how many hours are in 16 days you multiply 24 by 16 which is 384. Next you must find out how many minutes are in 384 hours. we know there are 60 minutes per hour. To find how many minutes are in 384 hours, you multiply 384 by 60. To this you get 23, 040 which is your answer.
Answer:
A computer's ability to perform so many calculations in a very short time affects how people communicate by stopping them from talking actually. We no longer talk verbally. We don't go out and socialize, we always talk from the phone or text. We have lost our inner touch with talking.
Explanation:
Answer:
Change in entropy for the reaction is
ΔS° = -268.13 J/K.mol
Explanation:
To calculate the change in entropy for the balanced reaction, we require the natural entropy of all the reactants and products in the reaction.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
From Literature.
S°(NO₂) = 240.06 J/K.mol
S°(H₂O) = 69.91 J/K.mol
S°(HNO₃) = 155.60 J/K.mol
S°(NO) = 210.76 J/K.mol
These are the entropies of the reactants and products under standard conditions of 298.15 K and 1 atm.
Note that
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
Σ nᵢS°(for products) = [2 × S°(HNO₃)] + [1 × S°(NO)]
= (2 × 155.60) + (1 × 210.76) = 521.96 J/K.mol
Σ nᵢS°(for reactants) = [3 × S°(NO₂)] + [1 × S°(H₂O)]
= (3 × 240.06) + (1 × 69.91) =790.09 J/K.mol
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
ΔS° = 521.96 - 790.09 = -268.13 J/K.mol
Hope this Helps!!
2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!