Answer:
B.3/5p
Explanation:
For this question, we have to remember <u>"Dalton's Law of Partial Pressures"</u>. This law says that the pressure of the mixture would be equal to the sum of the partial pressure of each gas.
Additionally, we have a <em>proportional relationship between moles and pressure</em>. In other words, more moles indicate more pressure and vice-versa.

Where:
=Partial pressure
=Total pressure
=mole fraction
With this in mind, we can work with the moles of each compound if we want to analyze the pressure. With the molar mass of each compound we can calculate the moles:
<u>moles of hydrogen gas</u>
The molar mass of hydrogen gas (
) is 2 g/mol, so:

<u>moles of oxygen gas</u>
The molar mass of oxygen gas (
) is 32 g/mol, so:

Now, total moles are:
Total moles = 2 + 3 = 5
With this value, we can write the partial pressure expression for each gas:


So, the answer would be <u>3/5P</u>.
I hope it helps!
A flood, if it hits the environment of the natural rubbers, would destroy how the rubber is being produced. to have a large amount of limitation, the flood would destroy a large percentage of rubber trees. This natural rubber is needed to make synthetic polymers. Without the rubber (because of damages to it's ecosystem through the flood), there would be a limited supply, and a substancial drop on synthetic polymers.
hope this helps
Cellular respiration occurs in animals.. what is it asking you
Answer:
is the volume of the air in the balloon after it is heated.
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
(at constant pressure)
where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:


is the volume of the air in the balloon after it is heated.