- 187.237 km/hr fast is θ changing 12 min after the plane passes over the radar station
<u>Explanation:</u>
Let the distance x and angle θ be defined as in the figure below. Then
![\tan \theta=\frac{6}{x}](https://tex.z-dn.net/?f=%5Ctan%20%5Ctheta%3D%5Cfrac%7B6%7D%7Bx%7D)
Now, differentiate with respect to t, we get
![\sec ^{2} \theta \frac{d \theta}{d t}=-\left(\frac{6}{x^{2}}\right) \frac{d x}{d t}](https://tex.z-dn.net/?f=%5Csec%20%5E%7B2%7D%20%5Ctheta%20%5Cfrac%7Bd%20%5Ctheta%7D%7Bd%20t%7D%3D-%5Cleft%28%5Cfrac%7B6%7D%7Bx%5E%7B2%7D%7D%5Cright%29%20%5Cfrac%7Bd%20x%7D%7Bd%20t%7D)
Now, calculate the travel distance from radar station to plane after 12min
Distance, ![x=800 \times \frac{12}{60}=160](https://tex.z-dn.net/?f=x%3D800%20%5Ctimes%20%5Cfrac%7B12%7D%7B60%7D%3D160)
Substituting ‘x’ value, we get
![\tan \theta=\frac{6}{160}=\frac{3}{80}](https://tex.z-dn.net/?f=%5Ctan%20%5Ctheta%3D%5Cfrac%7B6%7D%7B160%7D%3D%5Cfrac%7B3%7D%7B80%7D)
Find the rate of change of theta after 12 min,
![\frac{d \theta}{d t}=-\frac{1}{\sec ^{2} \theta} \times \frac{6}{x^{2}} \times \frac{d x}{d t}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%20%5Ctheta%7D%7Bd%20t%7D%3D-%5Cfrac%7B1%7D%7B%5Csec%20%5E%7B2%7D%20%5Ctheta%7D%20%5Ctimes%20%5Cfrac%7B6%7D%7Bx%5E%7B2%7D%7D%20%5Ctimes%20%5Cfrac%7Bd%20x%7D%7Bd%20t%7D)
We know, the formula for,
![\sec ^{2} \theta=1+\tan ^{2} \theta=1+\frac{3^{2}}{80^{2}}](https://tex.z-dn.net/?f=%5Csec%20%5E%7B2%7D%20%5Ctheta%3D1%2B%5Ctan%20%5E%7B2%7D%20%5Ctheta%3D1%2B%5Cfrac%7B3%5E%7B2%7D%7D%7B80%5E%7B2%7D%7D)
So, then, ![\frac{d x}{d t}=800 \mathrm{km} / \mathrm{hr}(\text { let assume })](https://tex.z-dn.net/?f=%5Cfrac%7Bd%20x%7D%7Bd%20t%7D%3D800%20%5Cmathrm%7Bkm%7D%20%2F%20%5Cmathrm%7Bhr%7D%28%5Ctext%20%7B%20let%20assume%20%7D%29)
![\frac{d \theta}{d t}=-\frac{1}{\left(1+\frac{3^{2}}{80^{2}}\right)} \times \frac{6}{160^{2}} \times 800](https://tex.z-dn.net/?f=%5Cfrac%7Bd%20%5Ctheta%7D%7Bd%20t%7D%3D-%5Cfrac%7B1%7D%7B%5Cleft%281%2B%5Cfrac%7B3%5E%7B2%7D%7D%7B80%5E%7B2%7D%7D%5Cright%29%7D%20%5Ctimes%20%5Cfrac%7B6%7D%7B160%5E%7B2%7D%7D%20%5Ctimes%20800)
![=-\frac{1}{\left(1+\frac{3^{2}}{80^{2}}\right)} \times \frac{6}{160^{2}} \times 800](https://tex.z-dn.net/?f=%3D-%5Cfrac%7B1%7D%7B%5Cleft%281%2B%5Cfrac%7B3%5E%7B2%7D%7D%7B80%5E%7B2%7D%7D%5Cright%29%7D%20%5Ctimes%20%5Cfrac%7B6%7D%7B160%5E%7B2%7D%7D%20%5Ctimes%20800)
![=-\frac{1}{1.0014} \times \frac{6}{25600} \times 800](https://tex.z-dn.net/?f=%3D-%5Cfrac%7B1%7D%7B1.0014%7D%20%5Ctimes%20%5Cfrac%7B6%7D%7B25600%7D%20%5Ctimes%20800)
![=-\frac{4800}{25635.84}=-0.187237 \mathrm{rad} / \mathrm{hr}](https://tex.z-dn.net/?f=%3D-%5Cfrac%7B4800%7D%7B25635.84%7D%3D-0.187237%20%5Cmathrm%7Brad%7D%20%2F%20%5Cmathrm%7Bhr%7D)
When express the value in km/he, we get, the change in theta as
![=-187.237 \mathrm{km} / \mathrm{hr}](https://tex.z-dn.net/?f=%3D-187.237%20%5Cmathrm%7Bkm%7D%20%2F%20%5Cmathrm%7Bhr%7D)