1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
2 years ago
14

An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.220 rev/s . The magnitude

of the angular acceleration is 0.920 rev/s2 . Both the the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.800 m .
1) Compute the fan's angular velocity magnitude after time 0.208 s has passed.
2)Through how many revolutions has the blade turned in the time interval 0.208 s from Question 1?
3)What is the tangential speed vt of a point on the tip of the blade at time t = 0.208 s ?
4)Calculate the magnitude at of the tangential acceleration of a point on the tip of the blade at time t = 0.208 s .
5)Calculate the magnitude ar of the radial (or centripetal) acceleration of the point at the end of the fan blade.
Physics
1 answer:
matrenka [14]2 years ago
4 0

Answer:

1) The fan's angular velocity after 0.208 seconds is approximately 2.585 rad/s

2) The number of revolutions the blade has travelled in 0.208 s is approximately 0.066 revolutions

3) The tangential speed of a point on the tip of the blade at time t = 0.208 s is approximately 1.034 m/s

4) The magnitude of the tangential acceleration of a point on the tip of the blade at time t = 0.208 seconds is approximately 2.312 m/s²

Explanation:

The given parameters are;

The initial velocity of the fan, n = 0.220 rev/s

The magnitude of the angular acceleration = 0.920 rev/s²

The direction of the angular acceleration and the angular velocity = Clockwise

The diameter of the circle formed by the electric ceiling fan blades, D = 0.800 m

1) The initial angular velocity of the fan, ω₀ = 2·π × n = 2·π × 0.220 rev/s = 1.38230076758 rad/s

The angular acceleration of the fan, α = 2·π×0.920 rad/s² = 5.78053048261 rad/s²

The fan's angular velocity, 'ω', after a time t = 0.208 seconds has passed is given as follows;

ω = ω₀ + α·t

From which we have;

ω = 1.38230076758 rad/s + 5.78053048261 rad/s × 0.208 s = 2.58465110796 rad/s

The fan's angular velocity after 0.208 seconds is ω ≈ 2.585 rad/s

2) The number of revolutions the blade has travelled in the given time interval is given from the angle turned, 'θ', in the given time as follows;

θ = ω₀·t + 1/2·α·t²

θ = 1.38230076758 × 0.208 + 1/2 × 5.78053048261 × 0.208² = 0.41256299505 radians

2·π radians = 1 revolution

∴ 0.41256299505 radians = 0.41256299505 radian× 1 revolution/(2·π radian) = 0.06566144 revolution

The number of revolutions the blade has travelled in 0.208 s ≈ 0.066 revolutions

3) The tangential speed of a point on the tip of the blade at time t = 0.208 s is given as follows;

The tangential speed, v_t = ω × r = ω × D/2

At t = 0.208 s, ω = 2.58465110796 rad/s, therefore, we have;

v_t = ω × D/2 = 2.58465110796 × 0.800/2 = 1.0338604413

The tangential speed, v_t = 1.0338604413 m/s

The tangential speed ≈ 1.034 m/s

4)  The magnitude of the tangential acceleration of a point on the tip of the blade at time t = 0.208 seconds, 'a' is given as follows;

a = α × r = α × D/2

a = 5.78053048261 × 0.800/2 = 2.31221219304

The tangential acceleration, a ≈ 2.312 m/s²

You might be interested in
Two stunt drivers drive directly toward each other. At time t=0 the two cars are a distance D apart, car 1 is at rest, and car 2
lesantik [10]

Answer: Hello there!

We know this:

The distance between the cars at t= 0 is D.

car 2 has an initial velocity of v0 and no acceleration.

car 1 has no initial velocity and a acceleration of ax that starts at  t = 0

then we could obtain the acceleration of the car 1 by integrating the acceleration over the time; this is v(t) = ax*t where there is not a constant of integration because the car 1 has no initial velocity.

Because the cars are moving against each other, we want to se at what time t they meet, this is equivalent to see:  

position of car 1 + position of car 2 = D

and in this way we could ignore constants of integration :D

for the position of each car we integrate again:  

P1(t) = (1/2)ax*t^2 and P2(t) = v0t

v0t + (1/2)ax*t^2 = D

v0t + (1/2)ax*t^2  - D = 0

now we can solve it for t using the Bhaskara equation.

t = \frac{-v0 +\sqrt{v0^{2} + 4*(1/2)ax*D } }{2(1/2)ax} =\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax}

that we cant solve witout knowing the values for v0, D and ax. But you could replace them in that equation and obtain the time, where you must remember that you need to choose the positive solution (because this quadratic equation has two solutions).

Now we want to know the velocity of car 1 just before the impact, this can be calculated by valuating the time in the as the time that we just found in the velocity equation for the car 1, this is:

v(\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax}) = ax*\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax} = {-v0 +\sqrt{v0^{2} + 2ax*D }

where again, you need to replace the values of v0, D and ax.

7 0
3 years ago
Suppose 500 joules of work is done to push an object in 15 seconds. Find the power for this situation
ohaa [14]

Answer:

You have to calculate

Explanation:

Work is done when a force that is applied to an object moves that object. The work is calculated by multiplying the force by the amount of movement of an object (W = F * d). A force of 10 newtons, that moves an object 3 meters, does 30 n-m of work.

5 0
3 years ago
Who created earthquake proof buildings?
klemol [59]

Answer:

Japanese created earthquake proof buildings

Explanation:

Countries like Japan where earthquakes are regular. So these important factors are downgraded to nice -to-haves behind the need of Japan structural stability. The Pacific ring of Fire and all its seismic activities are contributed to Japans strict building codes for skyscrapers and Towers. Building codes means, earthquakes proof structures are intended to withstand the earthquake.The prime example of an earthquake-ready country is Japan with its dedication to structural stability.

5 great examples are

1. Mori Tower

2. Tokyo Skytree

3.  Ark Hills Sengokuyama

4.fa-bo

5. Television House

8 0
3 years ago
How are kinetic energy potential energy and thermal energy in a substance related?​
asambeis [7]

The energy associated with an object's motion is called kinetic energy. ... This is also called thermal energy – the greater the thermal energy, the greater the kinetic energy of atomic motion, and vice versa.

3 0
3 years ago
According to newton's third law of motion, when a hammer strikes and exerts force to push it into a piece of wood, the nail
Darya [45]
According to newton's third law of motion, when a hammer strikes and exerts force to push it into a piece of wood, the nail <span>C. exerts an equal or opposite force on the hammer. The third law of motion states that every action has an equal BUT opposite reaction. This means that the nail exerts the same force the hammer exerts on it.</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • Which scenario requires the most power?
    14·1 answer
  • How many microliters are in one liter
    11·2 answers
  • What is the critical angle - easy definition
    8·1 answer
  • The law of reflection states that light is reflected off a surface at the same angle that light hits the surface. The arrow on t
    13·2 answers
  • What variable does the slope represent?
    15·2 answers
  • What is the climate of northern Alaska?
    6·2 answers
  • Which of these statements would best explain the problem encountered with nuclear waste disposal? A) The isotopes have a long ha
    10·1 answer
  • A magnetic field is created by ____.
    6·1 answer
  • Infer whether a circuit breaker should be connected in parallel to the circuit that it is protecting.
    13·1 answer
  • A force of 15 N is applied to a spring, causing it to stretch 0. 3 m. What is the spring constant for this particular spring? N/
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!