Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is
, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is 
Now, the distance equation for the man would be:

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.






The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.


Finally, the dog catches up with the man 6.1714m later.
Objects in free fall, disregarding terminal velocity, accelerate at 9.8(m/s)/s. so for every second it was falling, it gained 9.8m/s in speed. 9.8 * 10 = 98m/s
Answer:
Mass of the wooden Block is 20g.
Explanation:
The buoyant force equation will be used here
Buoyant Force= ρ*g*1/2V Here density used is of water
m*g= ρ*g*1/2V
Simplifying the above equation
2m= ρ*V Eq-1
Also we know from the question that
ρ*V = m + 0.020 Eq-2 ( Density = (Mass+20g)/Volume )
Equating Eq-1 & Eq-2 we get
2m = m+0.020
m = 0.020kg
m = 20g
<span>To begin, the formula for finding frequency when wavelength is known is "f = c / w" when c is the constant velocity (3 * 10^8 m/s). To convert the wavelength into a common form (m/s), it will have to be multiplied by 10^-2. This leaves the equation as "f = 3.0 * 10^8 / (2.4 * 10^-5 * 10^-2), or 2.4 * 10^-7. This gives 1.25 * 10^15 m/s as the frequency.</span>
<span>First question: The type of energy involved when a river moves sediment and erodes its banks is: option d. Kinetic energy. Kinetic energy is the energy associated with motion. A body (in this case the water) that moves has an energy associated with its motion that is proportional to the speed (exactly to the square of the speed). When the water collides with the banks it is the kinetic energy of the river that erodes it Second question: the answer is the option d. As gravity pulls water down a slope potential energy changes to knietic energy. This is the, water loses altitude and gains velocity. The potential energy. which is proportional to the height, decreases and the kinetic energy, which is proportional to the square of the speed, increases.</span>