Answer:
21.02moles of KBr
Explanation:
Parameters given:
Number of moles BaBr₂ = 10.51moles
Complete reaction equation:
BaBr₂ + K₂SO₄ → KBr + BaSO₄
Upon inspecting the given equation, we find out that the atoms are not balanced on both sides of the equation:
The balanced equation is:
BaBr₂ + K₂SO₄ → 2KBr + BaSO₄
From the equation:
1 mole of BaBr₂ produces 2 moles of KBr
∴ 10.51 moles of BaBr₂ will yield (2 x 10.51) moles = 21.02moles of KBr
Answer:
The correct answer is: Ka= 5.0 x 10⁻⁶
Explanation:
The ionization of a weak monoprotic acid HA is given by the following equilibrium: HA ⇄ H⁺ + A⁻. At the beginning (t= 0) we have 0.200 M of HA. Then, a certain amount (x) is dissociated into H⁺ and A⁻, as is detailed in the following table:
HA ⇄ H⁺ + A⁻
t= 0 0.200 M 0 0
t -x x x
t= eq 0.200M -x x x
At equilibrium, we have the following ionization constant expression (Ka):
Ka= ![\frac{ [H^{+}] [A^{-} ]}{ [HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BH%5E%7B%2B%7D%5D%20%20%5BA%5E%7B-%7D%20%5D%7D%7B%20%5BHA%5D%7D)
Ka= 
Ka= 
From the definition of pH, we know that:
pH= - log [H⁺]
In this case, [H⁺]= x, so:
pH= -log x
3.0= -log x
⇒x = 10⁻³
We introduce the value of x (10⁻³) in the previous expression and then we can calculate the ionization constant Ka as follows:
Ka=
=
= 5.025 x 10⁻⁶= 5.0 x 10⁻⁶
Answer : All of the above are valid expressions of the reaction rate.
Explanation :
The given rate of reaction is,

The expression for rate of reaction for the reactant :
![\text{Rate of disappearance of }NH_3=-\frac{1}{4}\times \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNH_3%3D-%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }O_2=-\frac{1}{7}\times \frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DO_2%3D-%5Cfrac%7B1%7D%7B7%7D%5Ctimes%20%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
The expression for rate of reaction for the product :
![\text{Rate of formation of }NO_2=+\frac{1}{4}\times \frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DNO_2%3D%2B%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{6}\times \frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
From this we conclude that, all the options are correct.
The half life equation is -->P(t) = Pi (0.5) ^ (t/c)
c is equal to the element to reach its half-life (5 seconds)t is equal to the duration of time the element is expose to (20 seconds)Pi is the initial amount (340)0.5 is the base of this exponential function to represent half-life.P(t) is the expression for the function of time
P(20) = 340 (0.5)^20/5P(20) = 340 (0.5) ^4P(20)= 21.25 grams
Fraction = P(t)/Pi = P(20)/Pi =21.25/340 =1/16
Therefore, when given 20 seconds, 340 grams of Fluorine-21 will degrade to 21.25 grams OR 1/16 of its original mass.
Hope this method helps! (This is my answer btw, I think you may have accidentally posted twice?)