The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is 
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{324^oC}}{K_{244^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7BK_%7B244%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 244°C = 
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![244^oC=[273+244]K=517K](https://tex.z-dn.net/?f=244%5EoC%3D%5B273%2B244%5DK%3D517K)
= final temperature = ![324^oC=[273+324]K=597K](https://tex.z-dn.net/?f=324%5EoC%3D%5B273%2B324%5DK%3D597K)
Putting values in above equation, we get:
![\ln(\frac{K_{324^oC}}{6.7})=\frac{71000J}{8.314J/mol.K}[\frac{1}{517}-\frac{1}{597}]\\\\K_{324^oC}=61.29M^{-1}s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7B6.7%7D%29%3D%5Cfrac%7B71000J%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B517%7D-%5Cfrac%7B1%7D%7B597%7D%5D%5C%5C%5C%5CK_%7B324%5EoC%7D%3D61.29M%5E%7B-1%7Ds%5E%7B-1%7D)
Hence, the rate constant at 324°C is 
A i belive is the correct answer
The answer for four is frequency.
Answer:
when the rates of the forward and reverse reactions are equal
Explanation:
In a chemical system, the reaction reaches a dynamic equilibrium when the rate of formation of product equals the rate of formation of reactants. This implies that both the forward and revered(backwards) reaction are occurring at the same rate.