The statement that best describes a solution is the option C: a mixture having a uniform composition where the components cannot be seen separately and all components are in the same state.<span> That is exactly what a solution is: a homogeneous mixture, the composition is uniform, but it can vary from one solution to other. The components must be in the safe phase, but it can be any phase: solid, liquid or gas. The most classical and clear example is the salt solution, NaCl. When you dissolve a spoon of NaCl in water you will not be able to distinguish nor separating the solute from the solvent, and the mixture will have uniform composition.</span>
What do you want us to work out?
Answer:
A) 0 °C, because it is the melting point of ice.
Explanation:
- Point B is the temperature at which the water is converted from ice (solid phase) to liquid water (liquid phase), which is the melting transition of water.
Melting point of the water is at 0.0°C.
<em>So, the right choice is: A) 0 °C, because it is the melting point of ice. </em>
<em></em>
Answer:
The molecular formula of the compound :
Explanation:
The empirical formula of the compound =
The molecular formula of the compound =
The equation used to calculate the valency is :

We are given:
Mass of molecular formula = 86 g/mol
Mass of empirical formula = 43 g/mol
Putting values in above equation, we get:

The molecular formula of the compound :

The energy required to break existing chemical bonds in reactants is called the activation energy.
<h3>What is activation energy?</h3>
Activation energy in chemistry is the energy required to initiate a chemical reaction.
Chemical reactions involve the breaking of chemical bonds in substances called reactants to form new substances called products.
The energy required to break the bond in the existing reactants thus elevating these substances to a state of high activation is known as activation energy.
Therefore, it can be said that energy required to break existing chemical bonds in reactants is called the activation energy.
Learn more about activation energy at: brainly.com/question/11334504
#SPJ1